Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X-ray crystallography, and computational methods

. 2009 May 19 ; 48 (19) : 4126-38.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid19301871

Grantová podpora
Z01 BC010761 Intramural NIH HHS - United States

Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a zinc-dependent exopeptidase and an important therapeutic target for neurodegeneration and prostate cancer. The hydrolysis of N-acetyl-l-aspartyl-l-glutamate (N-Ac-Asp-Glu), the natural dipeptidic substrate of the GCPII, is intimately involved in cellular signaling within the mammalian nervous system, but the exact mechanism of this reaction has not yet been determined. To investigate peptide hydrolysis by GCPII in detail, we constructed a mutant of human GCPII [GCPII(E424A)], in which Glu424, a putative proton shuttle residue, is substituted with alanine. Kinetic analysis of GCPII(E424A) using N-Ac-Asp-Glu as substrate revealed a complete loss of catalytic activity, suggesting the direct involvement of Glu424 in peptide hydrolysis. Additionally, we determined the crystal structure of GCPII(E424A) in complex with N-Ac-Asp-Glu at 1.70 A resolution. The presence of the intact substrate in the GCPII(E424A) binding cavity substantiates our kinetic data and allows a detailed analysis of GCPII/N-Ac-Asp-Glu interactions. The experimental data are complemented by the combined quantum mechanics/molecular mechanics calculations (QM/MM) which enabled us to characterize the transition states, including the associated reaction barriers, and provided detailed information concerning the GCPII reaction mechanism. The best estimate of the reaction barrier was calculated to be DeltaG(++) approximately 22(+/-5) kcal x mol(-1), which is in a good agreement with the experimentally observed reaction rate constant (k(cat) approximately 1 s(-1)). Combined together, our results provide a detailed and consistent picture of the reaction mechanism of this highly interesting enzyme at the atomic level.

Zobrazit více v PubMed

Cauwe B, Van den Steen PE, and Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol 42, 113–185. PubMed

Holz RC, Bzymek KP, and Swierczek SI (2003) Co-catalytic metallopeptidases as pharmaceutical targets. Curr. Opin. Chem. Biol 7, 197–206. PubMed

Holz RC (2002) The aminopeptidase from Aeromonas proteolytica: structure and mechanism of co-catalytic metal centers involved in peptide hydrolysis. Coord. Chem. Rev 232, 5–26.

Lowther WT, and Matthews BW (2002) Metalloaminopeptidases: Common functional themes in disparate structural surroundings. Chem. Rev 102, 4581–4608. PubMed

Wouters MA, and Husain A (2001) Changes in zinc ligation promote remodeling of the active site in the zinc hydrolase superfamily. J. Mol. Biol 314, 1191–1207. PubMed

Rawlings ND, and Barrett AJ (1997) Structure of membrane glutamate carboxypeptidase. Biochim. Biophys. Acta 1339, 247–252. PubMed

Chevrier B, Schalk C, D’Orchymont H, Rondeau JM, Moras D, and Tarnus C (1994) Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure 2, 283–291. PubMed

Greenblatt HM, Almog O, Maras B, Spungin-Bialik A, Barra D, Blumberg S, and Shoham G (1997) Streptomyces griseus aminopeptidase: X-ray crystallographic structure at 1.75 Å resolution. J. Mol. Biol 265, 620–636. PubMed

Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM Jr., Wang CY, and Haas GP (2006) Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J. Surg 30, 628–636. PubMed

Troyer JK, Beckett ML, and Wright GL Jr. (1995) Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int. J. Cancer 62 552–558. PubMed

Šácha P, Zámečník J, Bařinka C, Hlouchová K, Vícha A, Mlčchová P, Hilgert I, Eckschlager T, and Konvalinka J (2007) Expression of glutamate carboxypeptidase II in human brain. Neuroscience 144, 1361–1372. PubMed

Robinson MB, Blakely RD, Couto R, and Coyle JT (1987) Hydrolysis of the brain dipeptide N-acetyl-l-aspartyl-l-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain. J. Biol. Chem 262, 14498–14506. PubMed

Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP, May F, Mukherjee B, and Heston WD (1996) Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin. Cancer Res 2, 1445–1451. PubMed

Slusher BS, Vornov JJ, Thomas AG, Hurn PD, Harukuni I, Bhardwaj A, Traystman RJ, Robinson MB, Britton P, Lu XC, Tortella FC, Wozniak KM, Yudkoff M, Potter BM, and Jackson PF (1999) Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat. Med 5, 1396–1402. PubMed

Zhou J, Neale JH, Pomper MG, and Kozikowski AP (2005) NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat. Rev. Drug Discov 4, 1015–1026. PubMed

Gong MC, Chang SS, Sadelain M, Bander NH, and Heston WD (1999) Prostate-specific membrane antigen (PSMA)-specific monoclonal antibodies in the treatment of prostate and other cancers. Cancer Metastasis Rev. 18, 483–490. PubMed

Davis MI, Bennett MJ, Thomas LM, and Bjorkman PJ (2005) Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc. Natl. Acad. Sci. U.S.A 102, 5981–5986. PubMed PMC

Bařinka C, Starková J, Konvalinka J, and Lubkowski J (2007) A high-resolution structure of ligand-free human glutamate carboxypeptidase II. Acta Crystallogr, Sect. F: Struct. Biol. Cryst. Commun 63, 150–153. PubMed PMC

Mesters JR, Bařinka C, Li W, Tsukamoto T, Majer P, Slusher BS, Konvalinka J, and Hilgenfeld R (2006) Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 25, 1375–1384. PubMed PMC

Bařinka C, Hlouchová K, Rovenská M, Majer P, Dauter M, Hin N, Ko Y, Tsukamoto T, Slusher BS, Konvalinka J, and Lubkowski J (2008) Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J. Mol. Biol 376, 1438–1450. PubMed PMC

Bařinka C, Rovenská M, Mlčochová P, Hlouchová K, Plechanovová A, Majer P, Tsukamoto T, Slusher BS, Konvalinka J, and Lubkowski J (2007) Structural insight into the pharmacophore pocket of human glutamate carboxypeptidase II. J. Med. Chem 50, 3267–3273. PubMed

Speno HS, Luthi-Carter R, Macias WL, Valentine SL, Joshi AR, and Coyle JT (1999) Site-directed mutagenesis of predicted active site residues in glutamate carboxypeptidase II. Mol. Pharmacol 55, 179–185. PubMed

Mlčochová P, Plechanovová A, Bařinka C, Mahadevan D, Saldanha JW, Rulášek L, and Konvalinka J (2007) Mapping of the active site of glutamate carboxypeptidase II by site-directed mutagenesis. FEBS J. 274, 4731–4741. PubMed

Desmarais W, Bienvenue DL, Bzymek KP, Petsko GA, Ringe D, and Holz RC (2006) The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica. J. Biol. Inorg. Chem 11, 398–408. PubMed

Schürer G, Horn AHC, Gedeck P, and Clark T (2002) The reaction mechanism of bovine lens leucine aminopeptidase. J. Phys. Chem. B 106, 8815–8830. PubMed

Chen S, Marino T, Fang W, Russo N, and Himo F (2008) Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from Aeromonas proteolytica: A density functional theory study J. Phys. Chem. B 112, 2494–2500. PubMed

Bařinka C, Rinnová M, Šácha P, Rojas C, Majer P, Slusher BS, and Konvalinka J (2002) Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J. Neurochem 80, 477–487. PubMed

Otwinowski Z, and Minor W(1997) Processing of X-ray diffraction data collected in oscillation mode, in Methods in Enzymology (Carter CW Jr, and Sweet RM, Eds.) pp 307–326, Academic Press, New York.. PubMed

Murshudov GN, Vagin AA, Lebedev A, Wilson KS, and Dodson EJ (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr., Sect. D: Biol. Crystallogr 55, 247–255. PubMed

McRee DE (1999) XtalView/Xfit—A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol 125, 156–165. PubMed

Laskowski RA, McArthur MW, Moss DS, and Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr 26, 283–291.

Ryde U (1996) The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum chemical and molecular mechanical calculations. J. Comput.-Aided Mol. Des 10 153–164. PubMed

Treutler O, and Ahlrichs R (1995) Efficient molecular numerical integration schemes. J. Chem. Phys 102, 346–354.

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, and Kolman PA (1995) Second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc 117, 5179–5197.

Perdew JP, Burke K, and Ernzerhof M (1996) Generalized gradient approximation made simple. Phys. Rev. Lett 77 3865–3868. PubMed

Eichkorn K, Weigen F, Treutler O, and Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chim. Acta 97, 119–124.

Weigend F, and Ahlrichs R (2005) Balanced basis sets of split valence, triple-ζ valence and quadruple-ζ valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys 7, 3297–3305. PubMed

Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys 98, 5648–5652.

Woon DE, and Dunning TH Jr. (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys 98, 1358–1371.

Kendall RA, Dunning TH Jr., and Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys 96, 6796–6806.

Schäfer A, Klamt A, Sattel D, Lohrenz JCW, and Eckert F (2000) COSMO Implementation in TURBOMOLE: Extension of an efficient quantum chemical code towards liquid systems. Phys. Chem. Chem. Phys 2, 2187–2193.

Harding MM (1999) The geometry of metal–ligand interactions relevant to proteins. Acta Crystallogr., Sect. D: Biol. Crystallogr 55, 1432–1443. PubMed

Diaz N, Suarez D, and Merz KM Jr. (2000) Zinc metallo-β-lactamase from Bacteroides fragilis: a quantum chemical study on model systems of the active site. J. Am. Chem. Soc 122, 4197–4208.

Stamper C, Bennett B, Edwards T, Holz RC, Ringe D, and Petsko G (2001) Inhibition of the aminopeptidase from Aeromonas proteolytica by l-leucinephosphonic acid. Spectroscopic and crystallographic characterization of the transition state of peptide hydrolysis. Biochemistry 40, 7035–7046. PubMed

Schürer G, Lanig H, and Clark T (2004) Aeromonas proteolytica aminopeptidase: an investigation of the mode of action using a QM/MM approach. Biochemistry 43, 5414–5427. PubMed

Fundoiano-Hershcovitz Y, Rabinovitch L, Langut Y, Reiland V, Shoham G, and Shoham Y (2004) Identification of the catalytic residues in the double-zinc aminopeptidase from Streptomyces griseus. FEBS Lett. 571, 192–196. PubMed

Gilboa R, Greenblatt HM, Perach M, Spungin-Bialik A, Lessel U, Wohlfahrt G, Schomburg D, Blumberg S, and Shoham G (2000) Interactions of Streptomyces griseus aminopeptidase with a methionine product analogue: a structural study at 1.53 Å resolution. Acta Crystallogr, Sect. D: Biol. Crystallogr 56, 551–558. PubMed

Strater N, and Lipscomb WN (1995) Two-metal mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of l-leucinal, a gem-diolate transition state analogue, by X-ray crystallography. Biochemistry 34, 14792–14800. PubMed

Strater N, Sherratt DJ, and Colloms SD (1999) X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. EMBO J. 18, 4513–4522. PubMed PMC

Monzingo AF, and Matthews BW (1984) Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogs for zinc peptidases. Biochemistry 23, 5724–5729. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural, Biochemical, and Computational Characterization of Sulfamides as Bimetallic Peptidase Inhibitors

. 2024 Feb 12 ; 64 (3) : 1030-1042. [epub] 20240115

Uncovering the essential roles of glutamate carboxypeptidase 2 orthologs in Caenorhabditis elegans

. 2024 Jan 31 ; 44 (1) : .

Comprehensive Mechanistic View of the Hydrolysis of Oxadiazole-Based Inhibitors by Histone Deacetylase 6 (HDAC6)

. 2023 Jul 21 ; 18 (7) : 1594-1610. [epub] 20230701

Characterization of glutamate carboxypeptidase 2 orthologs in trematodes

. 2022 Dec 20 ; 15 (1) : 480. [epub] 20221220

Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors

. 2019 Jan 15 ; 27 (2) : 255-264. [epub] 20181114

The calcium-binding site of human glutamate carboxypeptidase II is critical for dimerization, thermal stability, and enzymatic activity

. 2018 Sep ; 27 (9) : 1575-1584.

Mouse glutamate carboxypeptidase II (GCPII) has a similar enzyme activity and inhibition profile but a different tissue distribution to human GCPII

. 2017 Sep ; 7 (9) : 1362-1378. [epub] 20170829

Structure-Activity Relationship of (18)F-Labeled Phosphoramidate Peptidomimetic Prostate-Specific Membrane Antigen (PSMA)-Targeted Inhibitor Analogues for PET Imaging of Prostate Cancer

. 2016 Jun 23 ; 59 (12) : 5684-94. [epub] 20160613

Structural and biochemical characterization of a novel aminopeptidase from human intestine

. 2015 May 01 ; 290 (18) : 11321-36. [epub] 20150309

Structural and biochemical characterization of the folyl-poly-γ-l-glutamate hydrolyzing activity of human glutamate carboxypeptidase II

. 2014 Jul ; 281 (14) : 3228-42. [epub] 20140617

Structural characterization of P1'-diversified urea-based inhibitors of glutamate carboxypeptidase II

. 2014 May 15 ; 24 (10) : 2340-5. [epub] 20140328

Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer

. 2012 ; 19 (6) : 856-70.

Novel substrate-based inhibitors of human glutamate carboxypeptidase II with enhanced lipophilicity

. 2011 Nov 10 ; 54 (21) : 7535-46. [epub] 20111011

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...