Uncovering the essential roles of glutamate carboxypeptidase 2 orthologs in Caenorhabditis elegans
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38108122
PubMed Central
PMC10794815
DOI
10.1042/bsr20230502
PII: 233851
Knihovny.cz E-zdroje
- Klíčová slova
- N-acetyl-aspartyl-glutamate, folate hydrolase 1, phenotyping, promoter-driven GFP expression, prostate-specific membrane antigen,
- MeSH
- Caenorhabditis elegans * genetika MeSH
- karboxypeptidasy genetika metabolismus MeSH
- lidé MeSH
- promotorové oblasti (genetika) MeSH
- proteiny Caenorhabditis elegans * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutamate carboxypeptidase MeSH Prohlížeč
- karboxypeptidasy MeSH
- proteiny Caenorhabditis elegans * MeSH
Human glutamate carboxypeptidase 2 (GCP2) from the M28B metalloprotease group is an important target for therapy in neurological disorders and an established tumor marker. However, its physiological functions remain unclear. To better understand general roles, we used the model organism Caenorhabditis elegans to genetically manipulate its three existing orthologous genes and evaluate the impact on worm physiology. The results of gene knockout studies showed that C. elegans GCP2 orthologs affect the pharyngeal physiology, reproduction, and structural integrity of the organism. Promoter-driven GFP expression revealed distinct localization for each of the three gene paralogs, with gcp-2.1 being most abundant in muscles, intestine, and pharyngeal interneurons, gcp-2.2 restricted to the phasmid neurons, and gcp-2.3 located in the excretory cell. The present study provides new insight into the unique phenotypic effects of GCP2 gene knockouts in C. elegans, and the specific tissue localizations. We believe that elucidation of particular roles in a non-mammalian organism can help to explain important questions linked to physiology of this protease group and in extension to human GCP2 involvement in pathophysiological processes.
Zobrazit více v PubMed
Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A. and Finn R.D. (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 10.1093/nar/gkx1134 PubMed DOI PMC
Tykvart J., Schimer J., Jančařík A., Bařinková J., Navrátil V., Starková J.et al. . (2015) Design of highly potent urea-based, exosite-binding inhibitors selective for glutamate carboxypeptidase II. J. Med. Chem. 58, 4357–4363 10.1021/acs.jmedchem.5b00278 PubMed DOI
Hlouchova K., Navratil V., Tykvart J., Sacha P. and Konvalinka J. (2012) GCPII variants, paralogs and orthologs. Curr. Med. Chem. 19, 1316–1322 10.2174/092986712799462676 PubMed DOI
Lambert L.A. and Mitchell S.L. (2007) Molecular evolution of the transferrin receptor/glutamate carboxypeptidase II family. J. Mol. Evol. 64, 113–128 10.1007/s00239-006-0137-4 PubMed DOI
Tykvart J., Bařinka C., Svoboda M., Navrátil V., Souček R., Hubálek M.et al. . (2015) Structural and biochemical characterization of a novel aminopeptidase from human intestine. J. Biol. Chem. 290, 11321–11336 10.1074/jbc.M114.628149 PubMed DOI PMC
Pavlicek J., Ptacek J. and Barinka C. (2012) Glutamate carboxypeptidase ii: an overview of structural studies and their importance for structure-based drug design and deciphering the reaction mechanism of the enzyme. Curr. Med. Chem. 19, 1300–1309 10.2174/092986712799462667 PubMed DOI
Ptacek J., Nedvedova J., Navratil M., Havlinova B., Konvalinka J. and Barinka C. (2018) The calcium-binding site of human glutamate carboxypeptidase II is critical for dimerization, thermal stability, and enzymatic activity. Protein Sci. 27, 1575–1584 10.1002/pro.3460 PubMed DOI PMC
Matteucci F., Mezzenga E., Caroli P., Di Iorio V., Sarnelli A., Celli M.et al. . (2017) Reduction of 68Ga-PSMA renal uptake with mannitol infusion: preliminary results. Eur. J. Nucl. Med. Mol. Imaging 44, 2189–2194 10.1007/s00259-017-3791-4 PubMed DOI
Rovenska M., Hlouchova K., Sacha P., Mlcochova P., Horak V., Zamecnik J.et al. . (2008) Tissue expression and enzymologic characterization of human prostate specific membrane antigen and its rat and pig orthologs. Prostate 68, 171–82 PubMed
Silver D.A., Pellicer I., Fair W.R., Heston W.D. and Cordon-Cardo C. (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3, 81–85 PubMed
Visentin M., Diop-Bove N., Zhao R. and Goldman I.D. (2014) The intestinal absorption of folates. Annu. Rev. Physiol. 76, 251–274 10.1146/annurev-physiol-020911-153251 PubMed DOI PMC
Rajasekaran A.K., Anilkumar G. and Christiansen J.J. (2005) Is prostate-specific membrane antigen a multifunctional protein? Am. J. Physiol.-Cell Physiol. 288, C975–C981 10.1152/ajpcell.00506.2004 PubMed DOI
Tsai G., Stauch-Slusher B., Sim L., Hedreen J.C., Rothstein J.D., Kuncl R.et al. . (1991) Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Res. 556, 151–156 10.1016/0006-8993(91)90560-I PubMed DOI
Plaitakis A. (1990) Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis. Ann. Neurol. 28, 3–8 10.1002/ana.410280103 PubMed DOI
Fricker A.C., Selina Mok M.H., de la Flor R., Shah A.J., Woolley M., Dawson L.A.et al. . (2009) Effects of N-acetylaspartylglutamate (NAAG) at group II mGluRs and NMDAR. Neuropharmacology 10.1016/j.neuropharm.2009.03.002 PubMed DOI
Šácha P., Zámečník J., Bařinka C., Hlouchová K., Vícha A., Mlčochová P.et al. . (2007) Expression of glutamate carboxypeptidase II in human brain. Neuroscience 144, 1361–1372 10.1016/j.neuroscience.2006.10.022 PubMed DOI
Lu X.C.M., Tang Z., Liu W., Lin Q. and Slusher B.S. (2000) N-acetylaspartylglutamate protects against transient focal cerebral ischemia in rats. Eur. J. Pharmacol. 408, 233–239 10.1016/S0014-2999(00)00762-7 PubMed DOI
Evans D. and Blumenthal T. (2000) Trans splicing of polycistronic Caenorhabditis elegans pre-mRNAs: analysis of the SL2 RNA. Mol. Cell. Biol. 20, 6659–6667 10.1128/MCB.20.18.6659-6667.2000 PubMed DOI PMC
Maurer T., Eiber M., Schwaiger M. and Gschwend J.E. (2016) Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 13, 226–235 10.1038/nrurol.2016.26 PubMed DOI
Haffner M.C., Kronberger I.E., Ross J.S., Sheehan C.E., Zitt M., Mühlmann G.et al. . (2009) Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum. Pathol. 40, 1754–1761 10.1016/j.humpath.2009.06.003 PubMed DOI
Samplaski M.K., Heston W., Elson P., Magi-Galluzzi C. and Hansel D.E. (2011) Folate hydrolase (prostate-specific membrane [corrected] antigen) 1 expression in bladder cancer subtypes and associated tumor neovasculature. Mod. Pathol. 24, 1521–1529 10.1038/modpathol.2011.112 PubMed DOI
Barinka C., Rojas C., Slusher B. and Pomper M. (2012) Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr. Med. Chem. 19, 856–870 10.2174/092986712799034888 PubMed DOI PMC
Bacich D.J., Ramadan E., O'Keefe D.S., Bukhari N., Wegorzewska I., Ojeifo O.et al. . (2002) Deletion of the glutamate carboxypeptidase II gene in mice reveals a second enzyme activity that hydrolyzes N‐acetylaspartylglutamate. J. Neurochem. 83, 20–29 10.1046/j.1471-4159.2002.01117.x PubMed DOI
Hlouchova K., Barinka C., Konvalinka J. and Lubkowski J. (2009) Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J. 276, 4448–4462 10.1111/j.1742-4658.2009.07152.x PubMed DOI
Howe K.L., Bolt B.J., Shafie M., Kersey P. and Berriman M. (2017) WormBase ParaSite − a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 10.1016/j.molbiopara.2016.11.005 PubMed DOI PMC
Riddle D.L., Blumenthal T., Meyer B.J. and Priess J.R. (1997) C. elegans II, 2nd ed, Cold Spring Harbor Laboratory Press PubMed
Harris T.W., Arnaboldi V., Cain S., Chan J., Chen W.J., Cho J.et al. . (2020) WormBase: a modern model organism information resource. Nucleic Acids Res. 48, D762–D767 PubMed PMC
Davis P., Zarowiecki M., Arnaboldi V., Becerra A., Cain S., Chan J.et al. . (2022) WormBase in 2022—data, processes, and tools for analyzing Caenorhabditis elegans. Genetics 220, 10.1093/genetics/iyac003 PubMed DOI PMC
Waterhouse A.M., Procter J.B., Martin D.M.A., Clamp M. and Barton G.J. (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 10.1093/bioinformatics/btp033 PubMed DOI PMC
Stothard P. (2000) The sequence manipulation suite: javascript programs for analyzing and formatting protein and DNA sequences. BioTechniques 28, 1102–1104 10.2144/00286ir01 PubMed DOI
Novakova Z., Wozniak K., Jancarik A., Rais R., Wu Y., Pavlicek J.et al. . (2016) Unprecedented binding mode of hydroxamate-based inhibitors of glutamate carboxypeptidase II: structural characterization and biological activity. J. Med. Chem. 59, 4539–4550 10.1021/acs.jmedchem.5b01806 PubMed DOI
Webb B. and Sali A. (2016) Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinform. 54, 5.6.1–5.6.37 10.1002/cpbi.3 PubMed DOI PMC
Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C.et al. . (2022) Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–D26 10.1093/nar/gkab1112 PubMed DOI PMC
Stiernagle T. (2006) Maintenance of C. elegans. WormBook: Online Rev. of C Elegans Biol. 1–11 10.1895/wormbook.1.101.1 PubMed DOI PMC
Mitani S. (2009) Nematode, an experimental animal in the national BioResource project. Exp. Anim. 58, 351–356 10.1538/expanim.58.351 PubMed DOI
Ahringer J. (2006) Reverse genetics. WormBook: the Online Rev. of C Elegans Biol. Available from: https://www.ncbi.nlm.nih.gov/books/NBK19711/ 10.1895/wormbook.1.47.1 DOI
Hoogewijs D., Houthoofd K., Matthijssens F., Vandesompele J. and Vanfleteren J.R. (2008) Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol. 9, 9 10.1186/1471-2199-9-9 PubMed DOI PMC
Fajtová P., Štefanić S., Hradilek M., Dvořák J., Vondrášek J., Jílková A.et al. . (2015) Prolyl Oligopeptidase from the Blood Fluke Schistosoma mansoni: From Functional Analysis to Anti-schistosomal Inhibitors. PLoS Negl.Trop. Dis. 9, e0003827 10.1371/journal.pntd.0003827 PubMed DOI PMC
Maulik M., Mitra S., Bult-Ito A., Taylor B.E. and Vayndorf E.M. (2017) Behavioral phenotyping and pathological indicators of Parkinson’s disease in C. elegans models. Front Genet. 8, 77 10.3389/fgene.2017.00077 PubMed DOI PMC
Raizen D., Song B.M., Trojanowski N. and You Y.J. (2012) Methods for measuring pharyngeal behaviors. WormBook: Online Rev. C Elegans Biol. 1–13 10.1895/wormbook.1.154.1 PubMed DOI PMC
Moribe H., Yochem J., Yamada H., Tabuse Y., Fujimoto T. and Mekada E. (2004) Tetraspanin protein (TSP-15) is required for epidermal integrity in Caenorhabditis elegans. J. Cell Sci. 117, 5209–5220 10.1242/jcs.01403 PubMed DOI
Evans T.C. (2006) Transformation and microinjection. WormBook: Online Rev. of C Elegans Biol. 10, 1–15 10.1895/wormbook.1.108.1 DOI
Mello C.C., Kramer J.M., Stinchcomb D. and Ambros V. (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 10.1002/j.1460-2075.1991.tb04966.x PubMed DOI PMC
Schneider C.A., Rasband W.S. and Eliceiri K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 10.1038/nmeth.2089 PubMed DOI PMC
Tong Y.-G. and Bürglin T.R. (2010) Conditions for dye-filling of sensory neurons in Caenorhabditis elegans. J. Neurosci. Methods 188, 58–61 10.1016/j.jneumeth.2010.02.003 PubMed DOI
Mulcahy B., Witvliet D., Holmyard D., Mitchell J., Chisholm A.D., Meirovitch Y.et al. . (2018) A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System. Front Neural Circuits 12, 94 10.3389/fncir.2018.00094 PubMed DOI PMC
Barinka C., Hlouchova K., Rovenska M., Majer P., Dauter M., Hin N.et al. . (2008) Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J. Mol. Biol. 376, 1438–1450 10.1016/j.jmb.2007.12.066 PubMed DOI PMC
Klusák V., Bařinka C., Plechanovová A., Mlčochová P., Konvalinka J., Rulíšek L.et al. . (2009) Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X-ray crystallography, and computational methods. Biochemistry 48, 4126–4138 10.1021/bi900220s PubMed DOI PMC
Mesters J.R., Barinka C., Li W., Tsukamoto T., Majer P., Slusher B.S.et al. . (2006) Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 25, 1375–1384 10.1038/sj.emboj.7600969 PubMed DOI PMC
Barinka C., Rinnova M., Sacha P., Rojas C., Majer P., Slusher B.S.et al. . (2002) Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J. Neurochem. 80, 477–487 10.1046/j.0022-3042.2001.00715.x PubMed DOI
Navrátil M., Tykvart J., Schimer J., Pachl P., Navrátil V., Rokob T.A.et al. . (2016) Comparison of human glutamate carboxypeptidases II and III reveals their divergent substrate specificities. FEBS J. 2528–2545 10.1111/febs.13761 PubMed DOI
Ferraris D.V., Shukla K. and Tsukamoto T. (2012) Structure-activity relationships of glutamate carboxypeptidase II (GCPII) inhibitors. Curr. Med. Chem. 19, 1282–1294 10.2174/092986712799462658 PubMed DOI
Starich T.A., Herman R.K., Kari C.K., Yeh W.H., Schackwitz W.S., Schuyler M.W.et al. . (1995) Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139, 171–188 10.1093/genetics/139.1.171 PubMed DOI PMC
Perkins L.A., Hedgecock E.M., Thomson J.N. and Culotti J.G. (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 10.1016/0012-1606(86)90314-3 PubMed DOI
Gao Y., Xu S., Cui Z., Zhang M., Lin Y., Cai L.et al. . (2015) Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury. J. Neurochem. 134, 340–353 10.1111/jnc.13123 PubMed DOI
Jeffery C.J. (2020) Enzymes, pseudoenzymes, and moonlighting proteins: diversity of function in protein superfamilies, pp. 4141–4149, Blackwell Publishing Ltd PubMed
Jang Y.J., Lin C.Y., Ma S. and Erikson R.L. (2002) Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. PNAS 99, 1984–1989 10.1073/pnas.042689299 PubMed DOI PMC
Mazumder S., Ganguly A. and Ali N. (2010) The effect of C-terminal domain deletion on the catalytic activity of Leishmania donovani surface proteinase GP63: Role of Ser446 in proteolysis. Biochimie 92, 1876–1885 10.1016/j.biochi.2010.07.014 PubMed DOI
Boeck M.E., Huynh C., Gevirtzman L., Thompson O.A., Wang G., Kasper D.M.et al. . (2016) The time-resolved transcriptome of C. elegans. Genome Res. 26, 1441–1450 10.1101/gr.202663.115 PubMed DOI PMC
Kaletsky R., Yao V., Williams A., Runnels A.M., Tadych A., Zhou S.et al. . (2018) Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression. PLos Genet. 14, e1007559–e 10.1371/journal.pgen.1007559 PubMed DOI PMC
Pereira L., Kratsios P., Serrano-Saiz E., Sheftel H., Mayo A.E., Hall D.H.et al. . (2015) A cellular and regulatory map of the cholinergic nervous system of C. elegans. Elife 4, e12432–e 10.7554/eLife.12432 PubMed DOI PMC
White J.G., Southgate E., Thomson J.N. and Brenner S. (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 10.1098/rstb.1986.0056 PubMed DOI
Trojanowski N.F., Raizen D.M. and Fang-Yen C. (2016) Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system. Sci. Rep. 6, 22940 10.1038/srep22940 PubMed DOI PMC
Sandhu A., Badal D., Sheokand R., Tyagi S. and Singh V. (2021) Specific collagens maintain the cuticle permeability barrier in Caenorhabditis elegans. Genetics 217, iyaa047 10.1093/genetics/iyaa047 PubMed DOI PMC
Schultz R.D., Bennett E.E., Ellis E.A. and Gumienny T.L. (2014) Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans. PloS ONE 9, e101929 10.1371/journal.pone.0101929 PubMed DOI PMC
Sundaram M.V. and Buechner M. (2016) The Caenorhabditis elegans excretory system: a model for tubulogenesis, cell fate specification, and plasticity. Genetics 203, 35–63 10.1534/genetics.116.189357 PubMed DOI PMC
Rais R., Jiang W., Zhai H., Wozniak K.M., Stathis M., Hollinger K.R.et al. . (2016) FOLH1/GCPII is elevated in IBD patients, and its inhibition ameliorates murine IBD abnormalities. JCI Insight 1, e88634 10.1172/jci.insight.88634 PubMed DOI PMC
Pangalos M.N., Neefs J.-M., Somers M., Verhasselt P., Bekkers M., van der Helm L.et al. . (1999) Isolation and expression of novel human glutamate carboxypeptidases with N-acetylated α-linked acidic dipeptidase and dipeptidyl peptidase IV activity. J. Biol. Chem. 274, 8470–8483 10.1074/jbc.274.13.8470 PubMed DOI
Barinka C., Starkova J., Konvalinka J. and Lubkowski J. (2007) A high-resolution structure of ligand-free human glutamate carboxypeptidase II. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63, 150–153 10.1107/S174430910700379X PubMed DOI PMC
Mesters J.R. and Hilgenfeld R. (2008) Glutamate Carboxypeptidase II. 258, pp. 1620–1627, John Wiley & Sons, Ltd, Chichester