The calcium-binding site of human glutamate carboxypeptidase II is critical for dimerization, thermal stability, and enzymatic activity

. 2018 Sep ; 27 (9) : 1575-1584.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30168215

Grantová podpora
86652036 Akademie Věd České Republiky - International
CZ.1.05/2.1.00/19.0390 European Regional Development Fund - International
CZ.02.1.01/0.0/0.0/16_013/0001776 European Regional Development Fund - International
P208-12-G016 Grantová Agentura České Republiky - International
Czech Science Foundation - International
Czech Academy of Sciences - International

Calcium ions are required for proper function of a wide spectrum of proteins within cells. X-ray crystallography of human glutamate carboxypeptidase II (GCPII) revealed the presence of a Ca2+ -binding site, but its importance for the structure and function of this metallopeptidase has not been elucidated to date. Here, we prepared a panel of mutants targeting residues that form the Ca2+ coordination sphere of GCPII and analyzed their structural and enzymatic properties using an array of complementary biophysical and biochemical approaches. Our data unequivocally show that even a slight disruption of the Ca2+ -binding site destabilizes the three-dimensional fold of GCPII and is associated with impaired secretion, a high propensity to form nonphysiological oligomers, and an inability to bind active site-targeted ligands. Additionally, the Ca2+ -binding site is critical for maintenance of the native homodimeric quaternary arrangement of GCPII, which is indispensable for its enzymatic activity. Overall, our results offer a clear picture of the importance of Ca2+ for the structural integrity and hydrolytic activity of human GCPII and by extension homologous members of the M28 zinc-dependent metallopeptidase family.

Zobrazit více v PubMed

Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35:D301–D303. PubMed PMC

Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980. PubMed

Martin RB (1991) The Biological Chemistry of the Elements ‐ the Inorganic‐Chemistry of Life ‐ Dasilva JJR. Williams RJP. Nature 354:367–367.

Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218. PubMed

Andreini C, Bertini I, Rosato A (2009) Metalloproteomes: a Bioinformatic Approach. Acc Chem Res 42:1471–1479. PubMed

Brini M, Cali T, Ottolini D, Carafoli E (2013) Intracellular Calcium Homeostasis and Signaling. Metal Ions Life Sci 12:119–168. PubMed

Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, Klimova N, Bednarova L, Veverka V, Kachala M, Svergun DI, Barinka C, Sebo P (2016) Calcium‐driven folding of RTX domain beta‐rolls ratchets translocation of RTX proteins through Type I secretion ducts. Mol Cell 62:47–62. PubMed

Berger UV, Carter RE, McKee M, Coyle JT (1995) N‐acetylated alpha‐linked acidic dipeptidase is expressed by non‐myelinating Schwann cells in the peripheral nervous system. J Neurocytol 24:99–109. PubMed

Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP, May F, Mukherjee B, Heston WD (1996) Prostate‐specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res 2:1445–1451. PubMed

Silver DA, Pellicer I, Fair WR, Heston WD, Cordon‐Cardo C (1997) Prostate‐specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85. PubMed

Chang SS, O'Keefe DS, Bacich DJ, Reuter VE, Heston WD, Gaudin PB (1999) Prostate‐specific membrane antigen is produced in tumor‐associated neovasculature. Clin Cancer Res 5:2674–2681. PubMed

Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB (1999) Five different anti‐prostate‐specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor‐associated neovasculature. Cancer Res 59:3192–3198. PubMed

Barinka C, Rojas C, Slusher B, Pomper M (2012) Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem 19:856–870. PubMed PMC

Klusak V, Barinka C, Plechanovova A, Mlcochova P, Konvalinka J, Rulisek L, Lubkowski J (2009) Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X‐ray crystallography, and computational methods. Biochemistry 48:4126–4138. PubMed PMC

Yang W, Lee HW, Hellinga H, Yang JJ (2002) Structural analysis, identification, and design of calcium‐binding sites in proteins. Proteins 47:344–356. PubMed

Mesters JR, Barinka C, Li WX, Tsukamoto T, Majer P, Slusher BS, Konvalinka J, Hilgenfeld R (2006) Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J 25:1375–1384. PubMed PMC

Schulke N, Varlamova OA, Donovan GP, Ma D, Gardner JP, Morrissey DM, Arrigale RR, Zhan C, Chodera AJ, Surowitz KG, Maddon PJ, Heston WD, Olson WC (2003) The homodimer of prostate‐specific membrane antigen is a functional target for cancer therapy. Proc Natl Acad Sci USA 100:12590–12595. PubMed PMC

Barinka C, Ptacek J, Richter A, Novakova Z, Morath V, Skerra A (2016) Selection and characterization of Anticalins targeting human prostate‐specific membrane antigen (PSMA). Protein Eng Des Sel 29:105–115. PubMed

Alquicer G, Sedlak D, Byun Y, Pavlicek J, Stathis M, Rojas C, Slusher B, Pomper MG, Bartunek P, Barinka C (2012) Development of a high‐throughput fluorescence polarization assay to identify novel ligands of glutamate carboxypeptidase II. J Biomol Screen 17:1030–1040. PubMed PMC

Novakova Z, Cerny J, Choy CJ, Nedrow JR, Choi JK, Lubkowski J, Berkman CE, Barinka C (2016) Design of composite inhibitors targeting glutamate carboxypeptidase II: the importance of effector functionalities. FEBS J 283:130–143. PubMed PMC

Ben‐Meir D, Spungin A, Ashkenazi R, Blumberg S (1993) Specificity of Streptomyces griseus aminopeptidase and modulation of activity by divalent metal ion binding and substitution. Eur J Biochem 212:107–112. PubMed

Fundoiano‐Hershcovitz Y, Rabinovitch L, Langut Y, Reiland V, Shoham G, Shoham Y (2004) Identification of the catalytic residues in the double‐zinc aminopeptidase from Streptomyces griseus. FEBS Lett 571:192–196. PubMed

Greenblatt HM, Almog O, Maras B, Spungin‐Bialik A, Barra D, Blumberg S, Shoham G (1997) Streptomyces griseus aminopeptidase: X‐ray crystallographic structure at 1.75 A resolution. J Mol Biol 265:620–636. PubMed

Maras B, Greenblatt HM, Shoham G, Spungin‐Bialik A, Blumberg S, Barra D (1996) Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc‐containing aminopeptidases. Eur J Biochem 236:843–846. PubMed

Reiland V, Gilboa R, Spungin‐Bialik A, Schomburg D, Shoham Y, Blumberg S, Shoham G (2004) Binding of inhibitory aromatic amino acids to Streptomyces griseus aminopeptidase. Acta Crystallogr D Biol Crystallogr 60:1738–1746. PubMed

Spungin A, Blumberg S (1989) Streptomyces griseus aminopeptidase is a calcium‐activated zinc metalloprotein. Purification and properties of the enzyme. Eur J Biochem 183:471–477. PubMed

Hlouchova K, Barinka C, Konvalinka J, Lubkowski J (2009) Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J 276:4448–4462. PubMed

Tykvart J, Barinka C, Svoboda M, Navratil V, Soucek R, Hubalek M, Hradilek M, Sacha P, Lubkowski J, Konvalinka J (2015) Structural and biochemical characterization of a novel aminopeptidase from human intestine. J Biol Chem 290:11321–11336. PubMed PMC

Bennett MJ, Lebron JA, Bjorkman PJ (2000) Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403:46–53. PubMed

Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC (1999) Crystal structure of the ectodomain of human transferrin receptor. Science 286:779–782. PubMed

Gilboa R, Greenblatt HM, Perach M, Spungin‐Bialik A, Lessel U, Wohlfahrt G, Schomburg D, Blumberg S, Shoham G (2000) Interactions of Streptomyces griseus aminopeptidase with a methionine product analogue: a structural study at 1.53 A resolution. Acta Crystallogr D Biol Crystallogr 56:551–558. PubMed

Steere AN, Chasteen ND, Miller BF, Smith VC, MacGillivray RTA, Mason AB (2012) Structure‐based mutagenesis reveals critical residues in the transferrin receptor participating in the mechanism of ph‐induced release of iron from human serum transferrin. Biochemistry 51:2113–2121. PubMed PMC

Barinka C, Sacha P, Sklenar J, Man P, Bezouska K, Slusher BS, Konvalinka J (2004) Identification of the N‐glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Protein Sci 13:1627–1635. PubMed PMC

Barinka C, Rinnova M, Sacha P, Rojas C, Majer P, Slusher BS, Konvalinka J (2002) Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J Neurochem 80:477–487. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...