The calcium-binding site of human glutamate carboxypeptidase II is critical for dimerization, thermal stability, and enzymatic activity
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
86652036
Akademie Věd České Republiky - International
CZ.1.05/2.1.00/19.0390
European Regional Development Fund - International
CZ.02.1.01/0.0/0.0/16_013/0001776
European Regional Development Fund - International
P208-12-G016
Grantová Agentura České Republiky - International
Czech Science Foundation - International
Czech Academy of Sciences - International
PubMed
30168215
PubMed Central
PMC6194262
DOI
10.1002/pro.3460
Knihovny.cz E-zdroje
- Klíčová slova
- NAALADase, calcium ion, circular dichroism, differential scanning fluorimetry, dimerization, folate hydrolase, metallopeptidase, prostate-specific membrane antigen,
- MeSH
- dimerizace MeSH
- glutamátkarboxypeptidasa II chemie genetika metabolismus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- stabilita proteinů MeSH
- teplota * MeSH
- vápník chemie metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutamátkarboxypeptidasa II MeSH
- vápník MeSH
Calcium ions are required for proper function of a wide spectrum of proteins within cells. X-ray crystallography of human glutamate carboxypeptidase II (GCPII) revealed the presence of a Ca2+ -binding site, but its importance for the structure and function of this metallopeptidase has not been elucidated to date. Here, we prepared a panel of mutants targeting residues that form the Ca2+ coordination sphere of GCPII and analyzed their structural and enzymatic properties using an array of complementary biophysical and biochemical approaches. Our data unequivocally show that even a slight disruption of the Ca2+ -binding site destabilizes the three-dimensional fold of GCPII and is associated with impaired secretion, a high propensity to form nonphysiological oligomers, and an inability to bind active site-targeted ligands. Additionally, the Ca2+ -binding site is critical for maintenance of the native homodimeric quaternary arrangement of GCPII, which is indispensable for its enzymatic activity. Overall, our results offer a clear picture of the importance of Ca2+ for the structural integrity and hydrolytic activity of human GCPII and by extension homologous members of the M28 zinc-dependent metallopeptidase family.
Zobrazit více v PubMed
Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35:D301–D303. PubMed PMC
Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980. PubMed
Martin RB (1991) The Biological Chemistry of the Elements ‐ the Inorganic‐Chemistry of Life ‐ Dasilva JJR. Williams RJP. Nature 354:367–367.
Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218. PubMed
Andreini C, Bertini I, Rosato A (2009) Metalloproteomes: a Bioinformatic Approach. Acc Chem Res 42:1471–1479. PubMed
Brini M, Cali T, Ottolini D, Carafoli E (2013) Intracellular Calcium Homeostasis and Signaling. Metal Ions Life Sci 12:119–168. PubMed
Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, Klimova N, Bednarova L, Veverka V, Kachala M, Svergun DI, Barinka C, Sebo P (2016) Calcium‐driven folding of RTX domain beta‐rolls ratchets translocation of RTX proteins through Type I secretion ducts. Mol Cell 62:47–62. PubMed
Berger UV, Carter RE, McKee M, Coyle JT (1995) N‐acetylated alpha‐linked acidic dipeptidase is expressed by non‐myelinating Schwann cells in the peripheral nervous system. J Neurocytol 24:99–109. PubMed
Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP, May F, Mukherjee B, Heston WD (1996) Prostate‐specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res 2:1445–1451. PubMed
Silver DA, Pellicer I, Fair WR, Heston WD, Cordon‐Cardo C (1997) Prostate‐specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85. PubMed
Chang SS, O'Keefe DS, Bacich DJ, Reuter VE, Heston WD, Gaudin PB (1999) Prostate‐specific membrane antigen is produced in tumor‐associated neovasculature. Clin Cancer Res 5:2674–2681. PubMed
Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB (1999) Five different anti‐prostate‐specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor‐associated neovasculature. Cancer Res 59:3192–3198. PubMed
Barinka C, Rojas C, Slusher B, Pomper M (2012) Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem 19:856–870. PubMed PMC
Klusak V, Barinka C, Plechanovova A, Mlcochova P, Konvalinka J, Rulisek L, Lubkowski J (2009) Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X‐ray crystallography, and computational methods. Biochemistry 48:4126–4138. PubMed PMC
Yang W, Lee HW, Hellinga H, Yang JJ (2002) Structural analysis, identification, and design of calcium‐binding sites in proteins. Proteins 47:344–356. PubMed
Mesters JR, Barinka C, Li WX, Tsukamoto T, Majer P, Slusher BS, Konvalinka J, Hilgenfeld R (2006) Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J 25:1375–1384. PubMed PMC
Schulke N, Varlamova OA, Donovan GP, Ma D, Gardner JP, Morrissey DM, Arrigale RR, Zhan C, Chodera AJ, Surowitz KG, Maddon PJ, Heston WD, Olson WC (2003) The homodimer of prostate‐specific membrane antigen is a functional target for cancer therapy. Proc Natl Acad Sci USA 100:12590–12595. PubMed PMC
Barinka C, Ptacek J, Richter A, Novakova Z, Morath V, Skerra A (2016) Selection and characterization of Anticalins targeting human prostate‐specific membrane antigen (PSMA). Protein Eng Des Sel 29:105–115. PubMed
Alquicer G, Sedlak D, Byun Y, Pavlicek J, Stathis M, Rojas C, Slusher B, Pomper MG, Bartunek P, Barinka C (2012) Development of a high‐throughput fluorescence polarization assay to identify novel ligands of glutamate carboxypeptidase II. J Biomol Screen 17:1030–1040. PubMed PMC
Novakova Z, Cerny J, Choy CJ, Nedrow JR, Choi JK, Lubkowski J, Berkman CE, Barinka C (2016) Design of composite inhibitors targeting glutamate carboxypeptidase II: the importance of effector functionalities. FEBS J 283:130–143. PubMed PMC
Ben‐Meir D, Spungin A, Ashkenazi R, Blumberg S (1993) Specificity of Streptomyces griseus aminopeptidase and modulation of activity by divalent metal ion binding and substitution. Eur J Biochem 212:107–112. PubMed
Fundoiano‐Hershcovitz Y, Rabinovitch L, Langut Y, Reiland V, Shoham G, Shoham Y (2004) Identification of the catalytic residues in the double‐zinc aminopeptidase from Streptomyces griseus. FEBS Lett 571:192–196. PubMed
Greenblatt HM, Almog O, Maras B, Spungin‐Bialik A, Barra D, Blumberg S, Shoham G (1997) Streptomyces griseus aminopeptidase: X‐ray crystallographic structure at 1.75 A resolution. J Mol Biol 265:620–636. PubMed
Maras B, Greenblatt HM, Shoham G, Spungin‐Bialik A, Blumberg S, Barra D (1996) Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc‐containing aminopeptidases. Eur J Biochem 236:843–846. PubMed
Reiland V, Gilboa R, Spungin‐Bialik A, Schomburg D, Shoham Y, Blumberg S, Shoham G (2004) Binding of inhibitory aromatic amino acids to Streptomyces griseus aminopeptidase. Acta Crystallogr D Biol Crystallogr 60:1738–1746. PubMed
Spungin A, Blumberg S (1989) Streptomyces griseus aminopeptidase is a calcium‐activated zinc metalloprotein. Purification and properties of the enzyme. Eur J Biochem 183:471–477. PubMed
Hlouchova K, Barinka C, Konvalinka J, Lubkowski J (2009) Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J 276:4448–4462. PubMed
Tykvart J, Barinka C, Svoboda M, Navratil V, Soucek R, Hubalek M, Hradilek M, Sacha P, Lubkowski J, Konvalinka J (2015) Structural and biochemical characterization of a novel aminopeptidase from human intestine. J Biol Chem 290:11321–11336. PubMed PMC
Bennett MJ, Lebron JA, Bjorkman PJ (2000) Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403:46–53. PubMed
Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC (1999) Crystal structure of the ectodomain of human transferrin receptor. Science 286:779–782. PubMed
Gilboa R, Greenblatt HM, Perach M, Spungin‐Bialik A, Lessel U, Wohlfahrt G, Schomburg D, Blumberg S, Shoham G (2000) Interactions of Streptomyces griseus aminopeptidase with a methionine product analogue: a structural study at 1.53 A resolution. Acta Crystallogr D Biol Crystallogr 56:551–558. PubMed
Steere AN, Chasteen ND, Miller BF, Smith VC, MacGillivray RTA, Mason AB (2012) Structure‐based mutagenesis reveals critical residues in the transferrin receptor participating in the mechanism of ph‐induced release of iron from human serum transferrin. Biochemistry 51:2113–2121. PubMed PMC
Barinka C, Sacha P, Sklenar J, Man P, Bezouska K, Slusher BS, Konvalinka J (2004) Identification of the N‐glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Protein Sci 13:1627–1635. PubMed PMC
Barinka C, Rinnova M, Sacha P, Rojas C, Majer P, Slusher BS, Konvalinka J (2002) Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J Neurochem 80:477–487. PubMed
Uncovering the essential roles of glutamate carboxypeptidase 2 orthologs in Caenorhabditis elegans
Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations