Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15152093
PubMed Central
PMC2279971
DOI
10.1110/ps.04622104
PII: 13/6/1627
Knihovny.cz E-zdroje
- MeSH
- antigeny povrchové chemie genetika metabolismus MeSH
- buněčné linie MeSH
- exprese genu MeSH
- glutamátkarboxypeptidasa II chemie genetika metabolismus MeSH
- glykosylace MeSH
- hmyz MeSH
- hydrolýza MeSH
- katalýza MeSH
- kinetika MeSH
- lidé MeSH
- mutageneze cílená genetika MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny povrchové MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
Glutamate carboxypeptidase II (GCPII) is a membrane peptidase expressed in the prostate, central and peripheral nervous system, kidney, small intestine, and tumor-associated neovasculature. The GCPII form expressed in the central nervous system, termed NAALADase, is responsible for the cleavage of N-acetyl-L-aspartyl-L-glutamate (NAAG) yielding free glutamate in the synaptic cleft, and is implicated in various pathologic conditions associated with glutamate excitotoxicity. The prostate form of GCPII, termed prostate-specific membrane antigen (PSMA), is up-regulated in cancer and used as an effective prostate cancer marker. Little is known about the structure of this important pharmaceutical target. As a type II membrane protein, GCPII is heavily glycosylated. In this paper we show that N-glycosylation is vital for proper folding and subsequent secretion of human GCPII. Analysis of the predicted N-glycosylation sites also provides evidence that these sites are critical for GCPII carboxypeptidase activity. We confirm that all predicted N-glycosylation sites are occupied by an oligosaccharide moiety and show that glycosylation at sites distant from the putative catalytic domain is critical for the NAAG-hydrolyzing activity of GCPII calling the validity of previously described structural models of GCPII into question.
Zobrazit více v PubMed
Bacich, D.J., Pinto, J.T., Tong, W.P., and Heston, W.D. 2001. Cloning, expression, genomic localization, and enzymatic activities of the mouse homolog of prostate-specific membrane antigen/NAALADase/folate hydrolase. Mamm. Genome 12 117–123. PubMed
Barinka, C., Rinnova, M., Šácha, P., Rojas, C., Majer, P., Slusher, B.S., and Konvalinka, J. 2002. Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J. Neurochem. 80 477–487. PubMed
Berger, U.V., Carter, R.E., McKee, M., and Coyle, J.T. 1995. N-acetylated α-linked acidic dipeptidase is expressed by non-myelinating Schwann cells in the peripheral nervous system. J. Neurocytol. 24 99–109. PubMed
Bezouska, K., Sklenár , J., Novák, P., Halada, P., Havlicek, V., Kraus, M., Ticha, M., and Jonakova, V. 1999. Determination of the complete covalent structure of the major glycoform of DQH sperm surface protein, a novel trypsin-resistant boar seminal plasma O-glycoprotein related to pB1 protein. Protein Sci. 8 1551–1556. PubMed PMC
Bzdega, T., Turi, T., Wroblewska, B., She, D., Chung, H.S., Kim, H., and Neale, J.H. 1997. Molecular cloning of a peptidase against N-acetylaspartylgluta-mate from a rat hippocampal cDNA library. J. Neurochem. 69 2270–2277. PubMed
Chang, S.S., Reuter, V.E., Heston, W.D., Bander, N.H., Grauer, L.S., and Gaudin, P.B. 1999. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 59 3192–3198. PubMed
Chevrier, B., Schalk, C., D’Orchymont, H., Rondeau, J.M., Moras, D., and Tarnus, C. 1994. Crystal structure of Aeromonas proteolytica aminopeptidase: A prototypical member of the co-catalytic zinc enzyme family. Structure 2 283–291. PubMed
Danbolt, N.C. 2001. Glutamate uptake. Prog. Neurobiol. 65 1–105. PubMed
Doble, A. 1999. The role of excitotoxicity in neurodegenerative disease: Implications for therapy. Pharmacol. Ther. 81 163–221. PubMed
Gavel, Y. and von Heijne, G. 1990. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: Implications for protein engineering. Protein Eng. 3 433–442. PubMed PMC
Ghosh, A. and Heston, W.D. 2003. Effect of carbohydrate moieties on the folate hydrolysis activity of the prostate specific membrane antigen. Prostate 57 140–151. PubMed
Gonzalez, J., Takao, T., Hori, H., Besada, V., Rodriguez, R., Padron, G., and Shimonishi, Y. 1992. A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: Identification of the positions of carbohydrate-linked asparagine in recombinant α-amylase by treatment with peptide-N-glycosidase F in 18O-labeled water. Anal. Biochem. 205 151–158. PubMed
Grauer, L.S., Lawler, K.D., Marignac, J.L., Kumar, A., Goel, A.S., and Wolfert, R.L. 1998. Identification, purification, and subcellular localization of prostate-specific membrane antigen PSM′ protein in the LNCaP prostatic carcinoma cell line. Cancer Res. 58 4787–4789. PubMed
Gregorakis, A.K., Holmes, E.H., and Murphy, G.P. 1998. Prostate-specific membrane antigen: Current and future utility. Semin. Urol. Oncol. 16 2–12. PubMed
Halsted, C.H., Ling, E.H., Luthi-Carter, R., Villanueva, J.A., Gardner, J.M., and Coyle, J.T. 1998. Folylpoly-gamma-glutamate carboxypeptidase from pig jejunum. Molecular characterization and relation to glutamate carboxypeptidase II. J. Biol. Chem. 273 20417–20424. PubMed
Harvey, D.J. 1999. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 18 349–450. PubMed
Helenius, A. and Aebi, M. 2001. Intracellular functions of N-linked glycans. Science 291 2364–2369. PubMed
Holmes, E.H., Greene, T.G., Tino, W.T., Boynton, A.L., Aldape, H.C., Misrock, S.L., and Murphy, G.P. 1996. Analysis of glycosylation of prostate-specific membrane antigen derived from LNCaP cells, prostatic carcinoma tumors, and serum from prostate cancer patients. Prostate Suppl. 7 25–29. PubMed
Israeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D. 1993. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 53 227–230. PubMed
Kadowaki, T., Tsukuba, T., Bertenshaw, G.P., and Bond, J.S. 2000. N-Linked oligosaccharides on the meprin A metalloprotease are important for secretion and enzymatic activity, but not for apical targeting. J. Biol. Chem. 275 25577–25584. PubMed
Lapidus, R.G., Tiffany, C.W., Isaacs, J.T., and Slusher, B.S. 2000. Prostate-specific membrane antigen (PSMA) enzyme activity is elevated in prostate cancer cells [In Process Citation]. Prostate 45 350–354. PubMed
Muhlenhoff, M., Manegold, A., Windfuhr, M., Gotza, B., and Gerardy-Schahn, R. 2001. The impact of N-glycosylation on the functions of polysialyltransferases. J. Biol. Chem. 276 34066–34073. PubMed
Packer, N.H., Lawson, M.A., Jardine, D.R., and Redmond, J.W. 1998. A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj. J. 15 737–747. PubMed
Rawlings, N.D. and Barrett, A.J. 1997. Structure of membrane glutamate carboxypeptidase. Biochim. Biophys. Acta 1339 247–252. PubMed
Robinson, M.B., Blakely, R.D., Couto, R., and Coyle, J.T. 1987. Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated α-linked acidic dipeptidase activity from rat brain. J. Biol. Chem. 262 14498–14506. PubMed
Rong, S.B., Zhang, J., Neale, J.H., Wroblewski, J.T., Wang, S., and Kozikowski, A.P. 2002. Molecular modeling of the interactions of glutamate carboxypeptidase II with its potent NAAG-based inhibitors. J. Med. Chem. 45 4140–4152. PubMed
Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A., and Dwek, R.A. 2001. Glycosylation and the immune system. Science 291 2370–2376. PubMed
Schmittgen, T.D., Teske, S., Vessella, R.L., True, L.D., and Zakrajsek, B.A. 2003. Expression of prostate specific membrane antigen and three alternatively spliced variants of PSMA in prostate cancer patients. Int. J. Cancer 107 323–329. PubMed
Slusher, B.S., Vornov, J.J., Thomas, A.G., Hurn, P.D., Harukuni, I., Bhardwaj, A., Traystman, R.J., Robinson, M.B., Britton, P., Lu, X.C., et al. 1999. Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat. Med. 5 1396–1402. PubMed
Su, S.L., Huang, I.P., Fair, W.R., Powell, C.T., and Heston, W.D. 1995. Alternatively spliced variants of prostate-specific membrane antigen RNA: Ratio of expression as a potential measurement of progression. Cancer Res. 55 1441–1443. PubMed
Tiffany, C.W., Lapidus, R.G., Merion, A., Calvin, D.C., and Slusher, B.S. 1999. Characterization of the enzymatic activity of PSM: Comparison with brain NAALADase. Prostate 39 28–35. PubMed
Tkacz, J.S. and Lampen, O. 1975. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem. Biophys. Res. Commun. 65 248–257. PubMed
Trotti, D., Aoki, M., Pasinelli, P., Berger, U.V., Danbolt, N.C., Brown Jr., R.H., and Hediger, M.A. 2001. Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J. Biol. Chem. 276 576–582. PubMed
Volf, P., Skarupova, S., and Man, P. 2002. Characterization of the lectin from females of Phlebotomus duboscqi sand flies. Eur. J. Biochem. 269 6294–6301. PubMed
Zhang, J.X., Braakman, I., Matlack, K.E., and Helenius, A. 1997. Quality control in the secretory pathway: The role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol. Biol. Cell 8 1943–1954. PubMed PMC
Characterization of glutamate carboxypeptidase 2 orthologs in trematodes
Glycoforms of human prostate-specific membrane antigen (PSMA) in human cells and prostate tissue
Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer