Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32246901
PubMed Central
PMC7175701
DOI
10.1016/j.bpj.2020.03.011
PII: S0006-3495(20)30260-5
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- dimerizace MeSH
- lidé MeSH
- membránové lipidy metabolismus MeSH
- membránové proteiny * metabolismus MeSH
- multimerizace proteinu MeSH
- rezonanční přenos fluorescenční energie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové lipidy MeSH
- membránové proteiny * MeSH
Many membrane proteins are thought to function as dimers or higher oligomers, but measuring membrane protein oligomerization in lipid membranes is particularly challenging. Förster resonance energy transfer (FRET) and fluorescence cross-correlation spectroscopy are noninvasive, optical methods of choice that have been applied to the analysis of dimerization of single-spanning membrane proteins. However, the effects inherent to such two-dimensional systems, such as the excluded volume of polytopic transmembrane proteins, proximity FRET, and rotational diffusion of fluorophore dipoles, complicate interpretation of FRET data and have not been typically accounted for. Here, using FRET and fluorescence cross-correlation spectroscopy, we introduce a method to measure surface protein density and to estimate the apparent Förster radius, and we use Monte Carlo simulations of the FRET data to account for the proximity FRET effect occurring in confined two-dimensional environments. We then use FRET to analyze the dimerization of human rhomboid protease RHBDL2 in giant plasma membrane vesicles. We find no evidence for stable oligomers of RHBDL2 in giant plasma membrane vesicles of human cells even at concentrations that highly exceed endogenous expression levels. This indicates that the rhomboid transmembrane core is intrinsically monomeric. Our findings will find use in the application of FRET and fluorescence correlation spectroscopy for the analysis of oligomerization of transmembrane proteins in cell-derived lipid membranes.
Zobrazit více v PubMed
Gupta K., Donlan J.A.C., Robinson C.V. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017;541:421–424. PubMed PMC
King C., Sarabipour S., Hristova K. The FRET signatures of noninteracting proteins in membranes: simulations and experiments. Biophys. J. 2014;106:1309–1317. PubMed PMC
King C., Raicu V., Hristova K. Understanding the FRET signatures of interacting membrane proteins. J. Biol. Chem. 2017;292:5291–5310. PubMed PMC
Chen L., Novicky L., Hristova K. Measuring the energetics of membrane protein dimerization in mammalian membranes. J. Am. Chem. Soc. 2010;132:3628–3635. PubMed PMC
Meyer B.H., Segura J.M., Vogel H. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. USA. 2006;103:2138–2143. PubMed PMC
Chakraborty H., Chattopadhyay A. Excitements and challenges in GPCR oligomerization: molecular insight from FRET. ACS Chem. Neurosci. 2015;6:199–206. PubMed
Strachotová D., Holoubek A., Palková Z. Ato protein interactions in yeast plasma membrane revealed by fluorescence lifetime imaging (FLIM) Biochim. Biophys. Acta. 2012;1818:2126–2134. PubMed
Snyder B., Freire E. Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Biophys. J. 1982;40:137–148. PubMed PMC
Sarabipour S., Del Piccolo N., Hristova K. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer. Acc. Chem. Res. 2015;48:2262–2269. PubMed PMC
Del Piccolo N., Placone J., Hristova K. Production of plasma membrane vesicles with chloride salts and their utility as a cell membrane mimetic for biophysical characterization of membrane protein interactions. Anal. Chem. 2012;84:8650–8655. PubMed PMC
Cohen S., Ushiro H., Chinkers M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J. Biol. Chem. 1982;257:1523–1531. PubMed
Scott R.E., Perkins R.G., Maercklein P.B. Plasma membrane vesiculation in 3T3 and SV3T3 cells. I. Morphological and biochemical characterization. J. Cell Sci. 1979;35:229–243. PubMed
Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J. 2013;280:1579–1603. PubMed
Düsterhöft S., Künzel U., Freeman M. Rhomboid proteases in human disease: mechanisms and future prospects. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:2200–2209. PubMed
Arutyunova E., Panwar P., Lemieux M.J. Allosteric regulation of rhomboid intramembrane proteolysis. EMBO J. 2014;33:1869–1881. PubMed PMC
Johnson N., Březinová J., Strisovsky K. Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis. Sci. Rep. 2017;7:7283. PubMed PMC
Adrain C., Strisovsky K., Freeman M. Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 2011;12:421–427. PubMed PMC
Lohi O., Urban S., Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr. Biol. 2004;14:236–241. PubMed
Noy P.J., Swain R.K., Bicknell R. Sprouting angiogenesis is regulated by shedding of the C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed by rhomboid-like 2 protein (RHBDL2) FASEB J. 2016;30:2311–2323. PubMed
Cheng T.L., Wu Y.T., Wu H.L. Functions of rhomboid family protease RHBDL2 and thrombomodulin in wound healing. J. Invest. Dermatol. 2011;131:2486–2494. PubMed
Pascall J.C., Brown K.D. Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochem. Biophys. Res. Commun. 2004;317:244–252. PubMed
Johansson L.B.Å., Engström S., Lindberg M. Electronic energy transfer in anisotropic systems. III. Monte Carlo simulations of energy migration in membranes. J. Chem. Phys. 1992;96:3844–3856.
Engström S., Lindberg M., Johansson L.B.Å. Monte Carlo simulations of electronic energy transfer in three-dimensional systems: a comparison with analytical theories. J. Chem. Phys. 1988;89:204–213.
Štefl M., Šachl R., Hof M. Dynamics and size of cross-linking-induced lipid nanodomains in model membranes. Biophys. J. 2012;102:2104–2113. PubMed PMC
Šachl R., Amaro M., Hof M. On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim. Biophys. Acta. 2015;1853:850–857. PubMed
Mlcochová P., Barinka C., Konvalinka J. Prostate-specific membrane antigen and its truncated form PSM’. Prostate. 2009;69:471–479. PubMed
Rajasekaran S.A., Anilkumar G., Rajasekaran A.K. A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol. Biol. Cell. 2003;14:4835–4845. PubMed PMC
Dubankova A., Humpolickova J., Boura E. Negative charge and membrane-tethered viral 3B cooperate to recruit viral RNA dependent RNA polymerase 3D pol. Sci. Rep. 2017;7:17309. PubMed PMC
Boukamp P., Petrussevska R.T., Fusenig N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988;106:761–771. PubMed PMC
Barinka C., Mlcochová P., Konvalinka J. Amino acids at the N- and C-termini of human glutamate carboxypeptidase II are required for enzymatic activity and proper folding. Eur. J. Biochem. 2004;271:2782–2790. PubMed
Sezgin E., Kaiser H.J., Levental I. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 2012;7:1042–1051. PubMed
Humpolickova J., Mejdrová I., Boura E. Fluorescent inhibitors as tools to characterize enzymes: case study of the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) J. Med. Chem. 2017;60:119–127. PubMed
Humpolícková J., Gielen E., Engelborghs Y. Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys. J. 2006;91:L23–L25. PubMed PMC
Wahl M., Gregor I., Enderlein J. Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt. Express. 2003;11:3583–3591. PubMed
Gregor I., Enderlein J. Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. Photochem. Photobiol. Sci. 2007;6:13–18. PubMed
Kapusta P., Macháň R., Hof M. Fluorescence lifetime correlation spectroscopy (FLCS): concepts, applications and outlook. Int. J. Mol. Sci. 2012;13:12890–12910. PubMed PMC
Baumann J., Fayer M.D. Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: effects of spatial geometry on time-resolved observables. J. Chem. Phys. 1986;85:4087–4107.
Schwille P., Meyer-Almes F.J., Rigler R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 1997;72:1878–1886. PubMed PMC
Ptacek J., Nedvedova J., Barinka C. The calcium-binding site of human glutamate carboxypeptidase II is critical for dimerization, thermal stability, and enzymatic activity. Protein Sci. 2018;27:1575–1584. PubMed PMC
Schülke N., Varlamova O.A., Olson W.C. The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proc. Natl. Acad. Sci. USA. 2003;100:12590–12595. PubMed PMC
Laurence T.A., Ly S., Coleman M.A. Fluorescence correlation spectroscopy at micromolar concentrations without optical nanoconfinement. J. Phys. Chem. B. 2014;118:9662–9667. PubMed
Magde D., Elson E., Webb W.W. Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 1972;29:705–708.
Wozniak A.K., Schröder G.F., Oesterhelt F. Single-molecule FRET measures bends and kinks in DNA. Proc. Natl. Acad. Sci. USA. 2008;105:18337–18342. PubMed PMC
Diez M., Zimmermann B., Gräber P. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat. Struct. Mol. Biol. 2004;11:135–141. PubMed
Munro S., Pelham H.R. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987;48:899–907. PubMed
Lewis M.J., Sweet D.J., Pelham H.R. The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell. 1990;61:1359–1363. PubMed
Lewis M.J., Pelham H.R. A human homologue of the yeast HDEL receptor. Nature. 1990;348:162–163. PubMed
Matsukawa S., Moriyama Y., Kuroda H. KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins. Int. J. Dev. Biol. 2012;56:351–356. PubMed
Dale R.E., Eisinger J., Blumberg W.E. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 1979;26:161–193. PubMed PMC
Akrap N., Seidel T., Barisas B.G. Förster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. Anal. Biochem. 2010;402:105–106. PubMed PMC
Kreutzberger A.J.B., Urban S. Single-molecule analyses reveal rhomboid proteins are strict and functional monomers in the membrane. Biophys. J. 2018;115:1755–1761. PubMed PMC
Zettl M., Adrain C., Freeman M. Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell. 2011;145:79–91. PubMed PMC
Greenblatt E.J., Olzmann J.A., Kopito R.R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol. 2011;18:1147–1152. PubMed PMC
Adrain C., Zettl M., Freeman M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science. 2012;335:225–228. PubMed PMC
Neal S., Jaeger P.A., Hampton R.Y. The Dfm1 derlin is required for ERAD retrotranslocation of integral membrane proteins. Mol. Cell. 2018;69:306–320.e4. PubMed PMC
Goder V., Carvalho P., Rapoport T.A. The ER-associated degradation component Der1p and its homolog Dfm1p are contained in complexes with distinct cofactors of the ATPase Cdc48p. FEBS Lett. 2008;582:1575–1580. PubMed PMC
Lazareno-Saez C., Arutyunova E., Lemieux M.J. Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease. J. Mol. Biol. 2013;425:1127–1142. PubMed
The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery
Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?
Osh6 Revisited: Control of PS Transport by the Concerted Actions of PI4P and Sac1 Phosphatase