Osh6 Revisited: Control of PS Transport by the Concerted Actions of PI4P and Sac1 Phosphatase

. 2021 ; 8 () : 747601. [epub] 20211012

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34712698

Osh6, a member of the oxysterol-binding protein-related protein (ORP) family, is a lipid transport protein that is involved in the transport of phosphatidylserine (PS) between the endoplasmic reticulum (ER) and the plasma membrane (PM). We used a biophysical approach to characterize its transport mechanism in detail. We examined the transport of all potential ligands of Osh6. PI4P and PS are the best described lipid cargo molecules; in addition, we showed that PIP2 can be transported by Osh6 as well. So far, it was the exchange between the two cargo molecules, PS and PI4P, in the lipid-binding pocket of Osh6 that was considered an essential driving force for the PS transport. However, we showed that Osh6 can efficiently transport PS along the gradient without the help of PI4P and that PI4P inhibits the PS transport along its gradient. This observation highlights that the exchange between PS and PI4P is indeed crucial, but PI4P bound to the protein rather than intensifying the PS transport suppresses it. We considered this to be important for the transport directionality as it prevents PS from returning back from the PM where its concentration is high to the ER where it is synthesized. Our results also highlighted the importance of the ER resident Sac1 phosphatase that enables the PS transport and ensures its directionality by PI4P consumption. Furthermore, we showed that the Sac1 activity is regulated by the negative charge of the membrane that can be provided by PS or PI anions in the case of the ER membrane.

Zobrazit více v PubMed

Best R. B., Zhu X., Shim J., Lopes P. E. M., Mittal J., Feig M., et al. (2012). Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J. Chem. Theor. Comput. 8 (9), 3257–3273. 10.1021/ct300400x PubMed DOI PMC

Boura E., Hurley J. H. (2012). Structural Basis for Membrane Targeting by the MVB12-Associated -prism Domain of the Human ESCRT-I MVB12 Subunit. Proc. Natl. Acad. Sci. 109 (6), 1901–1906. 10.1073/pnas.1117597109 PubMed DOI PMC

Cai Y., Deng Y., Horenkamp F., Reinisch K. M., Burd C. G. (2014). Sac1-Vps74 Structure Reveals a Mechanism to Terminate Phosphoinositide Signaling in the Golgi Apparatus. J. Cel Biol. 206 (4), 485–491. 10.1083/jcb.201404041 PubMed DOI PMC

Chalupska D., Eisenreichova A., Różycki B., Rezabkova L., Humpolickova J., Klima M., et al. (2017). Structural Analysis of Phosphatidylinositol 4-kinase IIIβ (PI4KB) - 14-3-3 Protein Complex Reveals Internal Flexibility and Explains 14-3-3 Mediated Protection from Degradation In Vitro . J. Struct. Biol. 200 (1), 36–44. 10.1016/j.jsb.2017.08.006 PubMed DOI

Chung J., Torta F., Masai K., Lucast L., Czapla H., Tanner L. B., et al. (2015). PI4P/phosphatidylserine Countertransport at ORP5- and ORP8-Mediated ER-Plasma Membrane Contacts. Science 349 (6246), 428–432. 10.1126/science.aab1370 PubMed DOI PMC

D'Ambrosio J. M., Albanèse V., Lipp N. F., Fleuriot L., Debayle D., Drin G., et al. (2020). Osh6 Requires Ist2 for Localization to ER-PM Contacts and Efficient Phosphatidylserine Transport in Budding Yeast. J. Cel Sci 133 (11), jcs243733. 10.1242/jcs.243733 PubMed DOI

de Saint-Jean M., Delfosse V., Douguet D., Chicanne G., Payrastre B., Bourguet W., et al. (2011). Osh4p Exchanges Sterols for Phosphatidylinositol 4-phosphate between Lipid Bilayers. J. Cel Biol. 195 (6), 965–978. 10.1083/jcb.201104062 PubMed DOI PMC

Dubankova A., Humpolickova J., Klima M., Boura E. (2017). Negative Charge and Membrane-Tethered Viral 3B Cooperate to Recruit Viral RNA Dependent RNA Polymerase 3D Pol. Sci. Rep. 7, 17309. 10.1038/s41598-017-17621-6 PubMed DOI PMC

Ghai R., Du X., Wang H., Dong J., Ferguson C., Brown A. J., et al. (2017). ORP5 and ORP8 Bind Phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and Regulate its Level at the Plasma Membrane. Nat. Commun. 8, 757. 10.1038/s41467-017-00861-5 PubMed DOI PMC

Hertel F., Li S., Chen M., Pott L., Mehta S., Zhang J. (2020). Fluorescent Biosensors for Multiplexed Imaging of Phosphoinositide Dynamics. ACS Chem. Biol. 15 (1), 33–38. 10.1021/acschembio.9b00691 PubMed DOI PMC

Humphrey W., Dalke A., Schulten K. (1996). VMD: Visual Molecular Dynamics. J. Mol. Graphics 14 (1), 33–38. 10.1016/0263-7855(96)00018-5 PubMed DOI

Humpolickova J., Mejdrová I., Matousova M., Nencka R., Boura E. (2017). Fluorescent Inhibitors as Tools to Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIβ (PI4KB). J. Med. Chem. 60 (1), 119–127. 10.1021/acs.jmedchem.6b01466 PubMed DOI

Ikhlef S., Lipp N.-F., Delfosse V., Fuggetta N., Bourguet W., Magdeleine M., et al. (2021). Functional Analyses of phosphatidylserine/PI(4)P Exchangers with Diverse Lipid Species and Membrane Contexts Set Unanticipated Rules on Lipid Transfer. Preprint. 10.1101/2021.07.16.452025 PubMed DOI PMC

Jo S., Kim T., Im W. (2007). Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations. Plos One 2 (9), e880. 10.1371/journal.pone.0000880 PubMed DOI PMC

Jo S., Kim T., Iyer V. G., Im W. (2008). CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 29 (11), 1859–1865. 10.1002/jcc.20945 PubMed DOI

Kim Y. C., Hummer G. (2008). Coarse-grained Models for Simulations of Multiprotein Complexes: Application to Ubiquitin Binding. J. Mol. Biol. 375 (5), 1416–1433. 10.1016/j.jmb.2007.11.063 PubMed DOI PMC

Klauda J. B., Venable R. M., Freites J. A., O’Connor J. W., Tobias D. J., Mondragon-Ramirez C., et al. (2010). Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 114 (23), 7830–7843. 10.1021/jp101759q PubMed DOI PMC

Klauda J. B., Monje V., Kim T., Im W. (2012). Improving the CHARMM Force Field for Polyunsaturated Fatty Acid Chains. J. Phys. Chem. B 116 (31), 9424–9431. 10.1021/jp304056p PubMed DOI

Klima M., Chalupska D., Różycki B., Humpolickova J., Rezabkova L., Silhan J., et al. (2017). Kobuviral Non-Structural 3A Proteins Act as Molecular Harnesses to Hijack the Host ACBD3 Protein. Structure 25 (2), 219–230. 10.1016/j.str.2016.11.021 PubMed DOI

Lee J., Cheng X., Swails J. M., Yeom M. S., Eastman P. K., Lemkul J. A., et al. (2016). CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theor. Comput. 12 (1), 405–413. 10.1021/acs.jctc.5b00935 PubMed DOI PMC

Li S. H., Xu G. K. (2019). Size-Dependent Mechanics of the Adherens Junction Mediated by Cooperative Trans and Cis Bindings. J. Appl. Mech.-Trans. Asme 86 (7), 071011. 10.1115/1.4043287 DOI

Luo X., Wasilko D. J., Liu Y., Sun J., Wu X., Luo Z. Q., et al. (2015). Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for its Targeting to the Bacterial Phagosome. Plos Pathog. 11 (6), e1004965. 10.1371/journal.ppat.1004965 PubMed DOI PMC

MacKerell A. D., Bashford D., Bellott M., Dunbrack R. L., Evanseck J. D., Field M. J., et al. (1998). All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins†. J. Phys. Chem. B 102 (18), 3586–3616. 10.1021/jp973084f PubMed DOI

Maeda K., Anand K., Chiapparino A., Kumar A., Poletto M., Kaksonen M., et al. (2013). Interactome Map Uncovers Phosphatidylserine Transport by Oxysterol-Binding Proteins. Nature 501 (7466), 257–261. 10.1038/nature12430 PubMed DOI

Manford A., Xia T., Saxena A. K., Stefan C., Hu F., Emr S. D., et al. (2010). Crystal Structure of the Yeast Sac1: Implications for its Phosphoinositide Phosphatase Function. Embo J. 29 (9), 1489–1498. 10.1038/emboj.2010.57 PubMed DOI PMC

Mesmin B., Bigay J., Polidori J., Jamecna D., Lacas‐Gervais S., Antonny B. (2017). Sterol Transfer, PI 4P Consumption, and Control of Membrane Lipid Order by Endogenous OSBP. Embo J. 36 (21), 3156–3174. 10.15252/embj.201796687 PubMed DOI PMC

Moser von Filseck J.,  opi  A., Delfosse V., Vanni S., Jackson C. L., Bourguet W., et al. (2015a). Phosphatidylserine Transport by ORP/Osh Proteins Is Driven by Phosphatidylinositol 4-phosphate. Science 349 (6246), 432–436. 10.1126/science.aab1346 PubMed DOI

Moser von Filseck J., Vanni S., Mesmin B., Antonny B., Drin G. (2015b). A Phosphatidylinositol-4-Phosphate Powered Exchange Mechanism to Create a Lipid Gradient between Membranes. Nat. Commun. 6, 6671. 10.1038/ncomms7671 PubMed DOI

Olkkonen V. M., Li S. (2013). Oxysterol-Binding Proteins: Sterol and Phosphoinositide Sensors Coordinating Transport, Signaling and Metabolism. Prog. Lipid Res. 52 (4), 529–538. 10.1016/j.plipres.2013.06.004 PubMed DOI

Olkkonen V. (2013). OSBP-Related Proteins: Liganding by Glycerophospholipids Opens New Insight into Their Function. Molecules 18 (11), 13666–13679. 10.3390/molecules181113666 PubMed DOI PMC

Phillips J. C., Hardy D. J., Maia J. D. C., Stone J. E., Ribeiro J. V., Bernardi R. C., et al. (2020). Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 153 (4), 044130. 10.1063/5.0014475 PubMed DOI PMC

Raychaudhuri S., Prinz W. A. (2010). The Diverse Functions of Oxysterol-Binding Proteins. Annu. Rev. Cel Dev. Biol. 26, 157–177. 10.1146/annurev.cellbio.042308.113334 PubMed DOI PMC

Saad J. S., Miller J., Tai J., Kim A., Ghanam R. H., Summers M. F. (2006). Structural Basis for Targeting HIV-1 Gag Proteins to the Plasma Membrane for Virus Assembly. Proc. Natl. Acad. Sci. 103 (30), 11364–11369. 10.1073/pnas.0602818103 PubMed DOI PMC

Skerle J., Humpolickova J., Johnson N., Rampirova P., Polachova E., Fliegl M., et al. (2020). Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations. Biophysical J. 118 (8), 1861–1875. 10.1016/j.bpj.2020.03.011 PubMed DOI PMC

van Meer G., Voelker D. R., Feigenson G. W. (2008). Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cel Biol 9 (2), 112–124. 10.1038/nrm2330 PubMed DOI PMC

Wahl M., Gregor I., Patting M., Enderlein J. (2003). Fast Calculation of Fluorescence Correlation Data with Asynchronous Time-Correlated Single-Photon Counting. Opt. Express 11 (26), 3583–3591. 10.1364/oe.11.003583 PubMed DOI

Wan C., Wu B., Song Z., Zhang J., Chu H., Wang A., et al. (2015). Insights into the Molecular Recognition of the Granuphilin C2A Domain with PI(4,5)P2. Chem. Phys. Lipids 186, 61–67. 10.1016/j.chemphyslip.2015.01.003 PubMed DOI

Wang H., Ma Q., Qi Y., Dong J., Du X., Rae J., et al. (2019). ORP2 Delivers Cholesterol to the Plasma Membrane in Exchange for Phosphatidylinositol 4, 5-Bisphosphate (PI(4,5)P2). Mol. Cel 73 (3), 458–473. 10.1016/j.molcel.2018.11.014 PubMed DOI

Wong A. K. O., Young B. P., Loewen C. J. R. (2021). Ist2 Recruits the Lipid Transporters Osh6/7 to ER-PM Contacts to Maintain Phospholipid Metabolism. J. Cel Biol. 220 (9), e201910161. 10.1083/jcb.201910161 PubMed DOI PMC

Wu E. L., Cheng X., Jo S., Rui H., Song K. C., Dávila-Contreras E. M., et al. (2014). CHARMM-GUIMembrane Buildertoward Realistic Biological Membrane Simulations. J. Comput. Chem. 35 (27), 1997–2004. 10.1002/jcc.23702 PubMed DOI PMC

Zewe J. P., Wills R. C., Sangappa S., Goulden B. D., Hammond G. R. (2018). SAC1 Degrades its Lipid Substrate PtdIns4P in the Endoplasmic Reticulum to Maintain a Steep Chemical Gradient with Donor Membranes. Elife 7, e35588. 10.7554/eLife.35588 PubMed DOI PMC

Zhong S., Hsu F., Stefan C. J., Wu X., Patel A., Cosgrove M. S., et al. (2012). Allosteric Activation of the Phosphoinositide Phosphatase Sac1 by Anionic Phospholipids. Biochemistry 51 (15), 3170–3177. 10.1021/bi300086c PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...