Osh6 Revisited: Control of PS Transport by the Concerted Actions of PI4P and Sac1 Phosphatase
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34712698
PubMed Central
PMC8546167
DOI
10.3389/fmolb.2021.747601
PII: 747601
Knihovny.cz E-zdroje
- Klíčová slova
- OSH6, SAC1, lipid transport, oxysterol-binding protein–related proteins, phosphatidylinositol (4, 5)-bisphosphate, phosphatidylinositol 4-phosphate, phosphatidylserine,
- Publikační typ
- časopisecké články MeSH
Osh6, a member of the oxysterol-binding protein-related protein (ORP) family, is a lipid transport protein that is involved in the transport of phosphatidylserine (PS) between the endoplasmic reticulum (ER) and the plasma membrane (PM). We used a biophysical approach to characterize its transport mechanism in detail. We examined the transport of all potential ligands of Osh6. PI4P and PS are the best described lipid cargo molecules; in addition, we showed that PIP2 can be transported by Osh6 as well. So far, it was the exchange between the two cargo molecules, PS and PI4P, in the lipid-binding pocket of Osh6 that was considered an essential driving force for the PS transport. However, we showed that Osh6 can efficiently transport PS along the gradient without the help of PI4P and that PI4P inhibits the PS transport along its gradient. This observation highlights that the exchange between PS and PI4P is indeed crucial, but PI4P bound to the protein rather than intensifying the PS transport suppresses it. We considered this to be important for the transport directionality as it prevents PS from returning back from the PM where its concentration is high to the ER where it is synthesized. Our results also highlighted the importance of the ER resident Sac1 phosphatase that enables the PS transport and ensures its directionality by PI4P consumption. Furthermore, we showed that the Sac1 activity is regulated by the negative charge of the membrane that can be provided by PS or PI anions in the case of the ER membrane.
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czechia
Institute of Physics Polish Academy of Sciences Warsaw Poland
Zobrazit více v PubMed
Best R. B., Zhu X., Shim J., Lopes P. E. M., Mittal J., Feig M., et al. (2012). Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J. Chem. Theor. Comput. 8 (9), 3257–3273. 10.1021/ct300400x PubMed DOI PMC
Boura E., Hurley J. H. (2012). Structural Basis for Membrane Targeting by the MVB12-Associated -prism Domain of the Human ESCRT-I MVB12 Subunit. Proc. Natl. Acad. Sci. 109 (6), 1901–1906. 10.1073/pnas.1117597109 PubMed DOI PMC
Cai Y., Deng Y., Horenkamp F., Reinisch K. M., Burd C. G. (2014). Sac1-Vps74 Structure Reveals a Mechanism to Terminate Phosphoinositide Signaling in the Golgi Apparatus. J. Cel Biol. 206 (4), 485–491. 10.1083/jcb.201404041 PubMed DOI PMC
Chalupska D., Eisenreichova A., Różycki B., Rezabkova L., Humpolickova J., Klima M., et al. (2017). Structural Analysis of Phosphatidylinositol 4-kinase IIIβ (PI4KB) - 14-3-3 Protein Complex Reveals Internal Flexibility and Explains 14-3-3 Mediated Protection from Degradation In Vitro . J. Struct. Biol. 200 (1), 36–44. 10.1016/j.jsb.2017.08.006 PubMed DOI
Chung J., Torta F., Masai K., Lucast L., Czapla H., Tanner L. B., et al. (2015). PI4P/phosphatidylserine Countertransport at ORP5- and ORP8-Mediated ER-Plasma Membrane Contacts. Science 349 (6246), 428–432. 10.1126/science.aab1370 PubMed DOI PMC
D'Ambrosio J. M., Albanèse V., Lipp N. F., Fleuriot L., Debayle D., Drin G., et al. (2020). Osh6 Requires Ist2 for Localization to ER-PM Contacts and Efficient Phosphatidylserine Transport in Budding Yeast. J. Cel Sci 133 (11), jcs243733. 10.1242/jcs.243733 PubMed DOI
de Saint-Jean M., Delfosse V., Douguet D., Chicanne G., Payrastre B., Bourguet W., et al. (2011). Osh4p Exchanges Sterols for Phosphatidylinositol 4-phosphate between Lipid Bilayers. J. Cel Biol. 195 (6), 965–978. 10.1083/jcb.201104062 PubMed DOI PMC
Dubankova A., Humpolickova J., Klima M., Boura E. (2017). Negative Charge and Membrane-Tethered Viral 3B Cooperate to Recruit Viral RNA Dependent RNA Polymerase 3D Pol. Sci. Rep. 7, 17309. 10.1038/s41598-017-17621-6 PubMed DOI PMC
Ghai R., Du X., Wang H., Dong J., Ferguson C., Brown A. J., et al. (2017). ORP5 and ORP8 Bind Phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and Regulate its Level at the Plasma Membrane. Nat. Commun. 8, 757. 10.1038/s41467-017-00861-5 PubMed DOI PMC
Hertel F., Li S., Chen M., Pott L., Mehta S., Zhang J. (2020). Fluorescent Biosensors for Multiplexed Imaging of Phosphoinositide Dynamics. ACS Chem. Biol. 15 (1), 33–38. 10.1021/acschembio.9b00691 PubMed DOI PMC
Humphrey W., Dalke A., Schulten K. (1996). VMD: Visual Molecular Dynamics. J. Mol. Graphics 14 (1), 33–38. 10.1016/0263-7855(96)00018-5 PubMed DOI
Humpolickova J., Mejdrová I., Matousova M., Nencka R., Boura E. (2017). Fluorescent Inhibitors as Tools to Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIβ (PI4KB). J. Med. Chem. 60 (1), 119–127. 10.1021/acs.jmedchem.6b01466 PubMed DOI
Ikhlef S., Lipp N.-F., Delfosse V., Fuggetta N., Bourguet W., Magdeleine M., et al. (2021). Functional Analyses of phosphatidylserine/PI(4)P Exchangers with Diverse Lipid Species and Membrane Contexts Set Unanticipated Rules on Lipid Transfer. Preprint. 10.1101/2021.07.16.452025 PubMed DOI PMC
Jo S., Kim T., Im W. (2007). Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations. Plos One 2 (9), e880. 10.1371/journal.pone.0000880 PubMed DOI PMC
Jo S., Kim T., Iyer V. G., Im W. (2008). CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 29 (11), 1859–1865. 10.1002/jcc.20945 PubMed DOI
Kim Y. C., Hummer G. (2008). Coarse-grained Models for Simulations of Multiprotein Complexes: Application to Ubiquitin Binding. J. Mol. Biol. 375 (5), 1416–1433. 10.1016/j.jmb.2007.11.063 PubMed DOI PMC
Klauda J. B., Venable R. M., Freites J. A., O’Connor J. W., Tobias D. J., Mondragon-Ramirez C., et al. (2010). Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 114 (23), 7830–7843. 10.1021/jp101759q PubMed DOI PMC
Klauda J. B., Monje V., Kim T., Im W. (2012). Improving the CHARMM Force Field for Polyunsaturated Fatty Acid Chains. J. Phys. Chem. B 116 (31), 9424–9431. 10.1021/jp304056p PubMed DOI
Klima M., Chalupska D., Różycki B., Humpolickova J., Rezabkova L., Silhan J., et al. (2017). Kobuviral Non-Structural 3A Proteins Act as Molecular Harnesses to Hijack the Host ACBD3 Protein. Structure 25 (2), 219–230. 10.1016/j.str.2016.11.021 PubMed DOI
Lee J., Cheng X., Swails J. M., Yeom M. S., Eastman P. K., Lemkul J. A., et al. (2016). CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theor. Comput. 12 (1), 405–413. 10.1021/acs.jctc.5b00935 PubMed DOI PMC
Li S. H., Xu G. K. (2019). Size-Dependent Mechanics of the Adherens Junction Mediated by Cooperative Trans and Cis Bindings. J. Appl. Mech.-Trans. Asme 86 (7), 071011. 10.1115/1.4043287 DOI
Luo X., Wasilko D. J., Liu Y., Sun J., Wu X., Luo Z. Q., et al. (2015). Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for its Targeting to the Bacterial Phagosome. Plos Pathog. 11 (6), e1004965. 10.1371/journal.ppat.1004965 PubMed DOI PMC
MacKerell A. D., Bashford D., Bellott M., Dunbrack R. L., Evanseck J. D., Field M. J., et al. (1998). All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins†. J. Phys. Chem. B 102 (18), 3586–3616. 10.1021/jp973084f PubMed DOI
Maeda K., Anand K., Chiapparino A., Kumar A., Poletto M., Kaksonen M., et al. (2013). Interactome Map Uncovers Phosphatidylserine Transport by Oxysterol-Binding Proteins. Nature 501 (7466), 257–261. 10.1038/nature12430 PubMed DOI
Manford A., Xia T., Saxena A. K., Stefan C., Hu F., Emr S. D., et al. (2010). Crystal Structure of the Yeast Sac1: Implications for its Phosphoinositide Phosphatase Function. Embo J. 29 (9), 1489–1498. 10.1038/emboj.2010.57 PubMed DOI PMC
Mesmin B., Bigay J., Polidori J., Jamecna D., Lacas‐Gervais S., Antonny B. (2017). Sterol Transfer, PI 4P Consumption, and Control of Membrane Lipid Order by Endogenous OSBP. Embo J. 36 (21), 3156–3174. 10.15252/embj.201796687 PubMed DOI PMC
Moser von Filseck J., opi A., Delfosse V., Vanni S., Jackson C. L., Bourguet W., et al. (2015a). Phosphatidylserine Transport by ORP/Osh Proteins Is Driven by Phosphatidylinositol 4-phosphate. Science 349 (6246), 432–436. 10.1126/science.aab1346 PubMed DOI
Moser von Filseck J., Vanni S., Mesmin B., Antonny B., Drin G. (2015b). A Phosphatidylinositol-4-Phosphate Powered Exchange Mechanism to Create a Lipid Gradient between Membranes. Nat. Commun. 6, 6671. 10.1038/ncomms7671 PubMed DOI
Olkkonen V. M., Li S. (2013). Oxysterol-Binding Proteins: Sterol and Phosphoinositide Sensors Coordinating Transport, Signaling and Metabolism. Prog. Lipid Res. 52 (4), 529–538. 10.1016/j.plipres.2013.06.004 PubMed DOI
Olkkonen V. (2013). OSBP-Related Proteins: Liganding by Glycerophospholipids Opens New Insight into Their Function. Molecules 18 (11), 13666–13679. 10.3390/molecules181113666 PubMed DOI PMC
Phillips J. C., Hardy D. J., Maia J. D. C., Stone J. E., Ribeiro J. V., Bernardi R. C., et al. (2020). Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 153 (4), 044130. 10.1063/5.0014475 PubMed DOI PMC
Raychaudhuri S., Prinz W. A. (2010). The Diverse Functions of Oxysterol-Binding Proteins. Annu. Rev. Cel Dev. Biol. 26, 157–177. 10.1146/annurev.cellbio.042308.113334 PubMed DOI PMC
Saad J. S., Miller J., Tai J., Kim A., Ghanam R. H., Summers M. F. (2006). Structural Basis for Targeting HIV-1 Gag Proteins to the Plasma Membrane for Virus Assembly. Proc. Natl. Acad. Sci. 103 (30), 11364–11369. 10.1073/pnas.0602818103 PubMed DOI PMC
Skerle J., Humpolickova J., Johnson N., Rampirova P., Polachova E., Fliegl M., et al. (2020). Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations. Biophysical J. 118 (8), 1861–1875. 10.1016/j.bpj.2020.03.011 PubMed DOI PMC
van Meer G., Voelker D. R., Feigenson G. W. (2008). Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cel Biol 9 (2), 112–124. 10.1038/nrm2330 PubMed DOI PMC
Wahl M., Gregor I., Patting M., Enderlein J. (2003). Fast Calculation of Fluorescence Correlation Data with Asynchronous Time-Correlated Single-Photon Counting. Opt. Express 11 (26), 3583–3591. 10.1364/oe.11.003583 PubMed DOI
Wan C., Wu B., Song Z., Zhang J., Chu H., Wang A., et al. (2015). Insights into the Molecular Recognition of the Granuphilin C2A Domain with PI(4,5)P2. Chem. Phys. Lipids 186, 61–67. 10.1016/j.chemphyslip.2015.01.003 PubMed DOI
Wang H., Ma Q., Qi Y., Dong J., Du X., Rae J., et al. (2019). ORP2 Delivers Cholesterol to the Plasma Membrane in Exchange for Phosphatidylinositol 4, 5-Bisphosphate (PI(4,5)P2). Mol. Cel 73 (3), 458–473. 10.1016/j.molcel.2018.11.014 PubMed DOI
Wong A. K. O., Young B. P., Loewen C. J. R. (2021). Ist2 Recruits the Lipid Transporters Osh6/7 to ER-PM Contacts to Maintain Phospholipid Metabolism. J. Cel Biol. 220 (9), e201910161. 10.1083/jcb.201910161 PubMed DOI PMC
Wu E. L., Cheng X., Jo S., Rui H., Song K. C., Dávila-Contreras E. M., et al. (2014). CHARMM-GUIMembrane Buildertoward Realistic Biological Membrane Simulations. J. Comput. Chem. 35 (27), 1997–2004. 10.1002/jcc.23702 PubMed DOI PMC
Zewe J. P., Wills R. C., Sangappa S., Goulden B. D., Hammond G. R. (2018). SAC1 Degrades its Lipid Substrate PtdIns4P in the Endoplasmic Reticulum to Maintain a Steep Chemical Gradient with Donor Membranes. Elife 7, e35588. 10.7554/eLife.35588 PubMed DOI PMC
Zhong S., Hsu F., Stefan C. J., Wu X., Patel A., Cosgrove M. S., et al. (2012). Allosteric Activation of the Phosphoinositide Phosphatase Sac1 by Anionic Phospholipids. Biochemistry 51 (15), 3170–3177. 10.1021/bi300086c PubMed DOI PMC