Coordination of transporter, cargo, and membrane properties during non-vesicular lipid transport
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-27735K
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
RVO: 61388963
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
PubMed
39604557
PubMed Central
PMC11603022
DOI
10.1038/s42003-024-07301-3
PII: 10.1038/s42003-024-07301-3
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- buněčná membrána * metabolismus MeSH
- fluidita membrány MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- fosfatidylseriny metabolismus MeSH
- proteiny vázající oxysterol MeSH
- Saccharomyces cerevisiae - proteiny * metabolismus genetika MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- steroidní receptory metabolismus MeSH
- unilamelární lipozómy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylinositolfosfáty MeSH
- fosfatidylseriny MeSH
- phosphatidylinositol 4-phosphate MeSH Prohlížeč
- proteiny vázající oxysterol MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- steroidní receptory MeSH
- unilamelární lipozómy MeSH
Homeostasis of cellular membranes is maintained by fine-tuning their lipid composition. Yeast lipid transporter Osh6, belonging to the oxysterol-binding protein-related proteins family, was found to participate in the transport of phosphatidylserine (PS). PS synthesized in the endoplasmic reticulum is delivered to the plasma membrane, where it is exchanged for phosphatidylinositol 4-phosphate (PI4P). PI4P provides the driving force for the directed PS transport against its concentration gradient. In this study, we employed an in vitro approach to reconstitute the transport process into the minimalistic system of large unilamellar vesicles to reveal its fundamental biophysical determinants. Our study draws a comprehensive portrait of the interplay between the structure and dynamics of Osh6, the carried cargo lipid, and the physical properties of the involved membranes, with particular attention to the presence of charged lipids and to membrane fluidity. Specifically, we address the role of the cargo lipid, which, by occupying the transporter, imposes changes in its dynamics and, consequently, predisposes the cargo to disembark in the correct target membrane.
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czechia
Institute of Physics Polish Academy of Sciences Warsaw Poland
Zobrazit více v PubMed
van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Bio.9, 112–124 (2008). PubMed PMC
Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell116, 153–166 (2004). PubMed
Lev, S. Nonvesicular lipid transfer from the endoplasmic reticulum. Csh Perspect. Biol.4, a013300 (2012). PubMed PMC
Reinisch, K. M. & Prinz, W. A. Mechanisms of nonvesicular lipid transport. J. Cell Biol.220, e202012058 (2021). PubMed PMC
Hanada, K. Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites. J. Lipid Res.59, 1341–1366 (2018). PubMed PMC
Hanna, M., Guillen-Samander, A. & De Camilli, P. RBG motif bridge-like lipid transport proteins: structure, functions, and open questions. Annu. Rev. Cell Dev. Biol.39, 409–434 (2023). PubMed
von Filseck, J. M. et al. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science349, 432–436 (2015). PubMed
Maeda, K. et al. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature501, 257 (2013). PubMed
Olkkonen, V. M. OSBP-related proteins: liganding by glycerophospholipids opens new insight into their function. Molecules18, 13666–13679 (2013). PubMed PMC
Schulz, T. A. et al. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J. Cell Biol.187, 889–903 (2009). PubMed PMC
D’Ambrosio, J. M. et al. Osh6 requires Ist2 for localization to ER-PM contacts and efficient phosphatidylserine transport in budding yeast. J. Cell Sci.133, jcs243733 (2020). PubMed
von Filseck, J. M., Vanni, S., Mesmin, B., Antonny, B. & Drin, G. A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat. Commun.6, 6671 (2015). PubMed
Zewe, J. P., Wills, R. C., Sangappa, S., Goulden, B. D. & Hammond, G. R. V. SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. Elife7, e35588 (2018). PubMed PMC
Zhong, S. R. et al. Allosteric activation of the phosphoinositide phosphatase sac1 by anionic phospholipids. Biochemistry51, 3170–3177 (2012). PubMed PMC
Eisenreichova, A., Rozycki, B., Boura, E. & Humpolickova, J. Osh6 revisited: control of PS transport by the concerted actions of PI4P and sac1 phosphatase. Front. Mol. Biosci.8, 747601 (2021). PubMed PMC
Lipp, N. F. et al. An electrostatic switching mechanism to control the lipid transfer activity of Osh6p. Nat. Commun.10, 3926 (2019). PubMed PMC
Kay, J. G. & Grinstein, S. Sensing phosphatidylserine in cellular membranes. Sensors11, 1744–1755 (2011). PubMed PMC
Shi, J. L., Heegaard, C. W., Rasmussen, J. T. & Gilbert, G. E. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Bba-Biomembranes1667, 82–90 (2004). PubMed
Eisenreichova, A., Humpolickova, J., Rózyeki, B., Boura, E. & Koukalova, A. Effects of biophysical membrane properties on recognition of phosphatidylserine, or phosphatidylinositol 4-phosphate by lipid biosensors LactC2, or P4M. Biochimie215, 42–49 (2023). PubMed
McLaughlin, S., Wang, J. Y., Gambhir, A. & Murray, D. PIP and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biom.31, 151–175 (2002). PubMed
Dickey, A. & Faller, R. Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys. J.95, 2636–2646 (2008). PubMed PMC
Wenk, M. R. et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol.21, 813–817 (2003). PubMed
Ikhlef, S. et al. Functional analyses of phosphatidylserine/PI(4)P exchangers with diverse lipid species and membrane contexts reveal unanticipated rules on lipid transfer. BMC Biol.19, 248 (2021). PubMed PMC
Fuggetta, N. et al. Reconstitution of ORP-mediated lipid exchange coupled to PI4P metabolism. Proc. Natl. Acad. Sci. USA121, e2315493121 (2024). PubMed PMC
Garten, M. et al. Methyl-branched lipids promote the membrane adsorption of alpha-synuclein by enhancing shallow lipid-packing defects. Phys. Chem. Chem. Phys.17, 15589–15597 (2015). PubMed
Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods18, 382–388 (2021). PubMed
Moqadam, M. et al. A membrane-assisted mechanism for the release of ceramide from the CERT START Domain. J. Phys. Chem. B.128, 6338–6351 (2024). PubMed PMC
Ghai, R. et al. ORP5 and ORP8 bind phosphatidylinositol-4,5-biphosphate (PtdIns(4,5)P-2) and regulate its level at the plasma membrane. Nat. Commun.8, 757 (2017). PubMed PMC
Zak, A., Korshunova, K., Rajtar, N., Kulig, W. & Kepczynski, M. Deciphering lipid arrangement in phosphatidylserine/phosphatidylcholine mixed membranes: simulations and experiments. Langmuir39, 18995–19007 (2023). PubMed PMC
Chalupska, D. et al. Structural analysis of phosphatidylinositol 4-kinase III beta (PI4KB)-14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. J. Struct. Biol.200, 36–44 (2017). PubMed
Klima, M. et al. Kobuviral non-structural 3A proteins act as molecular harnesses to hijack the host ACBD3 protein. Structure25, 219–230 (2017). PubMed
Humpolickova, J., Mejdrova, I., Matousova, M., Nencka, R. & Boura, E. Fluorescent inhibitors as tools to characterize enzymes: case study of the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KB). J. Med. Chem.60, 119–127 (2017). PubMed
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem.29, 1859–1865 (2008). PubMed
Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput.12, 405–413 (2016). PubMed PMC
MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B102, 3586–3616 (1998). PubMed
Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B114, 7830–7843 (2010). PubMed PMC
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput.8, 3257–3273 (2012). PubMed PMC
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys.153, 044130 (2020). PubMed PMC
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. Model14, 33–38 (1996). PubMed
Qi, Y. et al. CHARMM-GUI martini maker for coarse-grained simulations with the martini force field. J. Chem. Theory Comput.11, 4486–4494 (2015). PubMed
Periole, X., Cavalli, M., Marrink, S. J. & Ceruso, M. A. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput.5, 2531–2543 (2009). PubMed
Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics29, 845–854 (2013). PubMed PMC
Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem.26, 1701–1718 (2005). PubMed
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys.126, 014101 (2007). PubMed
Quigley, D. & Probert, M. I. Langevin dynamics in constant pressure extended systems. J. Chem. Phys.120, 11432–11441 (2004). PubMed