Coordination of transporter, cargo, and membrane properties during non-vesicular lipid transport

. 2024 Nov 27 ; 7 (1) : 1585. [epub] 20241127

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39604557

Grantová podpora
21-27735K Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
RVO: 61388963 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)

Odkazy

PubMed 39604557
PubMed Central PMC11603022
DOI 10.1038/s42003-024-07301-3
PII: 10.1038/s42003-024-07301-3
Knihovny.cz E-zdroje

Homeostasis of cellular membranes is maintained by fine-tuning their lipid composition. Yeast lipid transporter Osh6, belonging to the oxysterol-binding protein-related proteins family, was found to participate in the transport of phosphatidylserine (PS). PS synthesized in the endoplasmic reticulum is delivered to the plasma membrane, where it is exchanged for phosphatidylinositol 4-phosphate (PI4P). PI4P provides the driving force for the directed PS transport against its concentration gradient. In this study, we employed an in vitro approach to reconstitute the transport process into the minimalistic system of large unilamellar vesicles to reveal its fundamental biophysical determinants. Our study draws a comprehensive portrait of the interplay between the structure and dynamics of Osh6, the carried cargo lipid, and the physical properties of the involved membranes, with particular attention to the presence of charged lipids and to membrane fluidity. Specifically, we address the role of the cargo lipid, which, by occupying the transporter, imposes changes in its dynamics and, consequently, predisposes the cargo to disembark in the correct target membrane.

Zobrazit více v PubMed

van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Bio.9, 112–124 (2008). PubMed PMC

Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell116, 153–166 (2004). PubMed

Lev, S. Nonvesicular lipid transfer from the endoplasmic reticulum. Csh Perspect. Biol.4, a013300 (2012). PubMed PMC

Reinisch, K. M. & Prinz, W. A. Mechanisms of nonvesicular lipid transport. J. Cell Biol.220, e202012058 (2021). PubMed PMC

Hanada, K. Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites. J. Lipid Res.59, 1341–1366 (2018). PubMed PMC

Hanna, M., Guillen-Samander, A. & De Camilli, P. RBG motif bridge-like lipid transport proteins: structure, functions, and open questions. Annu. Rev. Cell Dev. Biol.39, 409–434 (2023). PubMed

von Filseck, J. M. et al. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science349, 432–436 (2015). PubMed

Maeda, K. et al. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature501, 257 (2013). PubMed

Olkkonen, V. M. OSBP-related proteins: liganding by glycerophospholipids opens new insight into their function. Molecules18, 13666–13679 (2013). PubMed PMC

Schulz, T. A. et al. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J. Cell Biol.187, 889–903 (2009). PubMed PMC

D’Ambrosio, J. M. et al. Osh6 requires Ist2 for localization to ER-PM contacts and efficient phosphatidylserine transport in budding yeast. J. Cell Sci.133, jcs243733 (2020). PubMed

von Filseck, J. M., Vanni, S., Mesmin, B., Antonny, B. & Drin, G. A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat. Commun.6, 6671 (2015). PubMed

Zewe, J. P., Wills, R. C., Sangappa, S., Goulden, B. D. & Hammond, G. R. V. SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. Elife7, e35588 (2018). PubMed PMC

Zhong, S. R. et al. Allosteric activation of the phosphoinositide phosphatase sac1 by anionic phospholipids. Biochemistry51, 3170–3177 (2012). PubMed PMC

Eisenreichova, A., Rozycki, B., Boura, E. & Humpolickova, J. Osh6 revisited: control of PS transport by the concerted actions of PI4P and sac1 phosphatase. Front. Mol. Biosci.8, 747601 (2021). PubMed PMC

Lipp, N. F. et al. An electrostatic switching mechanism to control the lipid transfer activity of Osh6p. Nat. Commun.10, 3926 (2019). PubMed PMC

Kay, J. G. & Grinstein, S. Sensing phosphatidylserine in cellular membranes. Sensors11, 1744–1755 (2011). PubMed PMC

Shi, J. L., Heegaard, C. W., Rasmussen, J. T. & Gilbert, G. E. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Bba-Biomembranes1667, 82–90 (2004). PubMed

Eisenreichova, A., Humpolickova, J., Rózyeki, B., Boura, E. & Koukalova, A. Effects of biophysical membrane properties on recognition of phosphatidylserine, or phosphatidylinositol 4-phosphate by lipid biosensors LactC2, or P4M. Biochimie215, 42–49 (2023). PubMed

McLaughlin, S., Wang, J. Y., Gambhir, A. & Murray, D. PIP and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biom.31, 151–175 (2002). PubMed

Dickey, A. & Faller, R. Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys. J.95, 2636–2646 (2008). PubMed PMC

Wenk, M. R. et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol.21, 813–817 (2003). PubMed

Ikhlef, S. et al. Functional analyses of phosphatidylserine/PI(4)P exchangers with diverse lipid species and membrane contexts reveal unanticipated rules on lipid transfer. BMC Biol.19, 248 (2021). PubMed PMC

Fuggetta, N. et al. Reconstitution of ORP-mediated lipid exchange coupled to PI4P metabolism. Proc. Natl. Acad. Sci. USA121, e2315493121 (2024). PubMed PMC

Garten, M. et al. Methyl-branched lipids promote the membrane adsorption of alpha-synuclein by enhancing shallow lipid-packing defects. Phys. Chem. Chem. Phys.17, 15589–15597 (2015). PubMed

Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods18, 382–388 (2021). PubMed

Moqadam, M. et al. A membrane-assisted mechanism for the release of ceramide from the CERT START Domain. J. Phys. Chem. B.128, 6338–6351 (2024). PubMed PMC

Ghai, R. et al. ORP5 and ORP8 bind phosphatidylinositol-4,5-biphosphate (PtdIns(4,5)P-2) and regulate its level at the plasma membrane. Nat. Commun.8, 757 (2017). PubMed PMC

Zak, A., Korshunova, K., Rajtar, N., Kulig, W. & Kepczynski, M. Deciphering lipid arrangement in phosphatidylserine/phosphatidylcholine mixed membranes: simulations and experiments. Langmuir39, 18995–19007 (2023). PubMed PMC

Chalupska, D. et al. Structural analysis of phosphatidylinositol 4-kinase III beta (PI4KB)-14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. J. Struct. Biol.200, 36–44 (2017). PubMed

Klima, M. et al. Kobuviral non-structural 3A proteins act as molecular harnesses to hijack the host ACBD3 protein. Structure25, 219–230 (2017). PubMed

Humpolickova, J., Mejdrova, I., Matousova, M., Nencka, R. & Boura, E. Fluorescent inhibitors as tools to characterize enzymes: case study of the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KB). J. Med. Chem.60, 119–127 (2017). PubMed

Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem.29, 1859–1865 (2008). PubMed

Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput.12, 405–413 (2016). PubMed PMC

MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B102, 3586–3616 (1998). PubMed

Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B114, 7830–7843 (2010). PubMed PMC

Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput.8, 3257–3273 (2012). PubMed PMC

Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys.153, 044130 (2020). PubMed PMC

Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. Model14, 33–38 (1996). PubMed

Qi, Y. et al. CHARMM-GUI martini maker for coarse-grained simulations with the martini force field. J. Chem. Theory Comput.11, 4486–4494 (2015). PubMed

Periole, X., Cavalli, M., Marrink, S. J. & Ceruso, M. A. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput.5, 2531–2543 (2009). PubMed

Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics29, 845–854 (2013). PubMed PMC

Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem.26, 1701–1718 (2005). PubMed

Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys.126, 014101 (2007). PubMed

Quigley, D. & Probert, M. I. Langevin dynamics in constant pressure extended systems. J. Chem. Phys.120, 11432–11441 (2004). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace