The Incidence of Liver Damage Found during Postmortem Examination at the Slaughterhouse
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2021ITA22
Internal Creative Agency of the University of Veterinary Sciences Brno
PubMed
36899698
PubMed Central
PMC10000166
DOI
10.3390/ani13050839
PII: ani13050839
Knihovny.cz E-zdroje
- Klíčová slova
- liver, livestock, pathological findings, poultry, veterinary inspection,
- Publikační typ
- časopisecké články MeSH
We monitored liver damage in cattle (cows, heifers, fattening bulls, and calves culled from the herd), pigs (sows, finishing pigs, and piglets culled from the farm), sheep (ewes and lambs), goats (does and kids), rabbits, and poultry (end-of-lay hens, broiler chickens, turkeys, domestic ducks, and domestic geese) in the period from 2010 to 2021. All animals (n = 1,425,710,143) reared on Czech farms and slaughtered at slaughterhouses in the Czech Republic were included in the analysis. We determined the total number of damaged livers for individual categories of animals and also analyzed separately the incidence of damage of acute, chronic, parasitic, and other origin. The overall incidence of liver damage was higher in adult animals compared to fattening animals in all species. In cattle and pigs, the incidence was also higher in young animals culled from the herd compared to fattening animals. When comparing adult animals by species, the incidence of liver damage was highest in cows (46.38%), followed by sows (17.51%), ewes (12.97%), and does (4.26%). When comparing fattening animals by species, the incidence was highest in heifers (14.17%) and fattening bulls (7.97 %), followed by finishing pigs (11.26%), lambs (4.73%), and kids (0.59%). When comparing young culled from the herd by species, it was higher in piglets (32.39%) than in calves (17.6 %), and when poultry and rabbits were compared, the incidence was highest in turkeys (3.38%), followed by ducks (2.20%), geese (1.09%), broiler chickens (0.08%), and rabbits (0.04%). The results indicate that fattening animals have a better liver condition than mature animals and that culled young have a worse liver condition than older fattening animals. Chronic lesions represented the dominant proportion of pathological findings. Parasitic lesions occurred, first and foremost, in animals grazed on meadows with likely parasitic invasion, i.e., in ewes (7.51%), lambs (3.51%), and heifers (1.31%), and in animals in which antiparasitic protection is limited in view of the protection of meat from antiparasitic residues, i.e., finishing pigs (3.68%). Parasitic damage to the liver was rarely detected in rabbits and poultry. The results obtained represent a body of knowledge for measures to improve the health and condition of the liver in food animals.
Zobrazit více v PubMed
McGavin M.D., Zachary J.J. Pathologic Basis of Veterinary Disease. 4th ed. Mosby-Elsevier; Maryland-Heights, MO, USA: 2007.
Andersen J.B., Ridder C., Larsen T. Priming the cow for mobilization in the periparturient period: Effects of supplementing the dry cow with saturated fat or linseed. J. Dairy Sci. 2008;91:1029–1043. doi: 10.3168/jds.2007-0437. PubMed DOI
Litherland N.B., da Silva D.N.L., Hansen W.P., Davis L., Emanuele S., Blalock H. Effects of prepartum controlled-energy wheat straw and grass hay diets supplemented with starch or sugar on periparturient dairy cow performance and lipid metabolism. J. Dairy Sci. 2013;96:3050–3063. doi: 10.3168/jds.2012-5998. PubMed DOI
Petit H.V., Palin M.F., Doepel L. Hepatic lipid metabolism in transition dairy cows fed flaxseed. J. Dairy Sci. 2007;90:4780–4792. doi: 10.3168/jds.2007-0066. PubMed DOI
Kalyesubula M., Mopuri R., Rosov A., Alon T., Edery N., Moallem U., Dvir H. Hyperglycemia-stimulating diet induces liver steatosis in sheep. Sci. Rep. 2020;10:12189. doi: 10.1038/s41598-020-68909-z. PubMed DOI PMC
Lee L., Alloosh M., Saxena R., Van Alstine W., Watkins B.A., Klaunig J.E., Sturek M., Chalasani N. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology. 2009;50:56–67. doi: 10.1002/hep.22904. PubMed DOI PMC
Marongiu F., Serra M.P., Sini M., Marongiu M., Contini A., Laconi E. Cell turnover in the repopulated rat liver: Distinct lineages for hepatocytes and the biliary epithelium. Cell Tissue Res. 2014;356:333–340. doi: 10.1007/s00441-014-1800-5. PubMed DOI PMC
Johnson D.E., Johnson K.A., Baldwin R.L. Changes in liver and gastrointestinal tract energy demands in response to physiological workload in ruminants. J. Nutr. 1990;120:649–655. doi: 10.1093/jn/120.6.649. PubMed DOI
Zaitoun A.A., Apelqvist G., Al-Mardini H., Gray T., Bengtsson F., Record C.O. Quantitative studies of liver atrophy after portacaval shunt in the rat. J. Surg. Res. 2006;131:225–232. doi: 10.1016/j.jss.2005.11.587. PubMed DOI
Zaefarian F.A., Abdollahi M.R., Cowieson A., Ravindran V. Avian liver: The forgotten organ. Animals. 2019;9:63. doi: 10.3390/ani9020063. PubMed DOI PMC
Mayulu H., Suryanto Sunarso B., Christiyanto M., Ballo dan Refa’I F.I. Kelayakan penggunaan complete feed berbasis jerami padi amofer pada peternakan sapi potong. J. Pengemb. Peternak. Trop. 2008;34:74–79.
Mayulu H., Sunarso C., Imam Sutrisno C., Sumarsono S. The effects of amofer palm oil waste-based complete feed to blood profiles and liver function on local sheep. Internat. J. Sci. Eng. 2012;3:16–20.
Alexandre P.A., Kogelman L.J., Santana M.H., Passarelli D., Pulz L.H., Fantinato-Neto P., Silva P.L., Leme P.R., Strefezzi R.F., Coutinho L.L., et al. Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genomics. 2015;16:1073. doi: 10.1186/s12864-015-2292-8. PubMed DOI PMC
Hashemi M. Heavy metal concentrations in bovine tissues (muscle, liver and kidney) and their relationship with heavy metal contents in consumed feed. Ecotoxicol. Environ. Saf. 2018;154:263–267. doi: 10.1016/j.ecoenv.2018.02.058. PubMed DOI
Yang C., Song G., Lim W. Effects of mycotoxin-contaminated feed on farm animals. J. Hazard. Mater. 2020;389:122087. doi: 10.1016/j.jhazmat.2020.122087. PubMed DOI
Keutgen H., Wurm S., Ueberschar S. Pathologic changes in end-of-lay hens with regards to different housing systems. Deut Tierarztl Woch. 1999;106:127–133. PubMed
Januskeviciene G., Paulauskas V., Dailidaviciene J., Juozaitiene V. Analysis of pathologic lesions in the livestock and poultry slaughtered in the meat establishments of Lithuania. Vet. Zootec. 2010;52:33–42.
Tabaran A., Dan S.D., Reget O., Tabaran A.F., Mihaiu M. Slaughterhouse survey on the frequency of pathologies found in bovine post-mortem inspections. Bull. UASVM Vet. Med. 2018;75:251–255.
Kaluza M., Vecerek V., Voslarova E., Semerad Z., Passantino A. Assessing the standard of health and welfare in individual categories of cattle from the viewpoint of intravital pathological changes. Agriculture. 2020;10:619. doi: 10.3390/agriculture10120619. DOI
Kaluza M., Vecerek V., Voslarova E., Semerad Z., Passantino A. Incidence of characteristic findings during veterinary carcass inspections 2010–2019 in the Czech Republic and the relation to the level of health and welfare of individual classes of cattle. Animals. 2021;11:537. doi: 10.3390/ani11020537. PubMed DOI PMC
Lis H. An evaluation of veterinary inspection of slaughtered animals and meat in Poland between 1987-1997. Med. Weter. 1999;55:243–246.
Lis H. Results of veterinary inspection of slaughtered animals and meat in Poland in 2000. Med. Weter. 2002;58:267–269.
Vecerek V., Kozak A., Malena M., Chloupek P., Pistekova V. Organs of slaughter pigs as a source of potential risk for human health in the Czech Republic during the years 1995–2002. Vet. Med. 2004;49:75–78. doi: 10.17221/5680-VETMED. DOI
Vecerek V., Voslarova E., Semerad Z. Patho-anatomic findings in finisher pigs, sows and piglets detected during veterinary slaughterhouse inspection. Acta Vet. 2020;89:341–347. doi: 10.2754/avb202089040341. DOI
Vecerek V., Voslarova E., Semerad Z., Passantino A. The health and welfare of pigs from the perspective of post mortem findings in slaughterhouses. Animals. 2020;10:825. doi: 10.3390/ani10050825. PubMed DOI PMC
Valkova L., Vecerek V., Voslarova E., Zavrelova V., Conte F., Semerad Z. The health and welfare of rabbits as indicated by post-mortem findings at the slaughterhouse. Animals. 2021;11:659. doi: 10.3390/ani11030659. PubMed DOI PMC
Conficoni D., Cullere M., Lago N., Alberghini L., Rossin T., Dalle Zotte A., Giaccone V. Prevalence of post mortem lesions recorded in a large italian rabbit slaughterhouse over a fifteen-year period (2003–2017) World Rabbit Sci. 2020;28:39–47. doi: 10.4995/wrs.2020.11530. DOI
Drozd L., Paszkiewictz W., Pyz-Lukasik R. Post-slaughter changes in rabbit carcasses in Poland between 2010 and 2018. Med. Weter. 2019;75:613–616. doi: 10.21521/mw.6294. DOI
Rampin F., Piccirillo A., Schiavon E., Poppi L., Grilli G. Detection of pathological lesions in slaughtered rabbits. Ital. J. Anim. Sci. 2008;7:105–111. doi: 10.4081/ijas.2008.105. DOI
Jakob H.P., Morgenstern R., Albicker P., Hoop R.K. Condemnation reasons of slaughtered broilers from two major Swiss producing companies. Schweiz. Arch. Tierh. 1998;140:60–64. PubMed
Amini K., Zachar T., Popowich S., Knezacek T., Goodhope B., Willson P., Gomis S. Association of increased rate of condemnation of broiler carcasses due to hepatic abnormalities with immunosuppressive diseases in the broiler chicken industry in Saskatchewan. Can. J. Vet. Res. 2015;79:261–267. PubMed PMC
Buzdugan S.N., Chang Y.M., Huntington B., Rushton J., Guitian J., Alarcon P., Blake D.P. Identification of production chain risk factors for slaughterhouse condemnation of broiler chickens. Prev. Vet. Med. 2020;181:105036. doi: 10.1016/j.prevetmed.2020.105036. PubMed DOI
Lupo C., Le Bouquin S., Allain V., Balaine L., Michel V., Petetin I., Colin P., Chauvin C. Risk and indicators of condemnation of male turkey broilers in western France, February-July 2006. Prev. Vet. Med. 2010;94:240–250. doi: 10.1016/j.prevetmed.2010.01.011. PubMed DOI
European Union Commission Implementing Regulation (EU) 2019/627 of 15 March 2019 laying down uniform practical arrangements for the performance of official controls on products of animal origin intended for human consumption in accordance with Regulation (EU) 2017/625 of the European Parliament and of the Council and amending Commission Regulation (EC) No 2074/2005 as regards official controls. Off. J. Eur. Union. 2019;L131:51–100.
European Union Council Regulation (EC) No 1/2005 of 22 December 2004 on the protection of animals during transport and related operations and amending Directives 64/432/EEC and 93/119/EC and Regulation (EC) No 1255/97. Off. J. Eur. Union. 2005;L3:1–44.
European Union Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Union. 2009 September 24;L303:1–30.
Zar J.H. Biostatistical Analysis. Prentice Hall; Upper Saddle River, NJ, USA: 1999.
Nagaraja T.G., Lechtenberg K.F. Liver abscesses in feedlot cattle. Vet. Clin. North. Am. Food. Anim. Pract. 2007;23:351–369. doi: 10.1016/j.cvfa.2007.05.002. PubMed DOI
De Vries A., Marcondes M.I. Review: Overview of factors affecting productive lifespan of dairy cows. Anim. 2020;14:155–164. doi: 10.1017/S1751731119003264. PubMed DOI
Dupuy C., Morignat E., Maugey X., Vinard J.L., Hendrikx P., Ducrot C., Calavas D., Gay E. Defining syndromes using cattle meat inspection data for syndromic surveillance purposes: A statistical approach with the 2005–2010 data from ten French slaughterhouses. BMC Vet. Res. 2013;9:88. doi: 10.1186/1746-6148-9-88. PubMed DOI PMC
Gregory N.G., Robins J.K. A body condition scoring system for layer hens. N. Z. J. Agric. Res. 1998;41:555–559. doi: 10.1080/00288233.1998.9513338. DOI
Bobe G., Young J.W., Beitz D.C. Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci. 2004;87:3105–3124. doi: 10.3168/jds.S0022-0302(04)73446-3. PubMed DOI
Ingvartsen K.L. Feeding and management related diseases in the transition cow. Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed Sci. Technol. 2006;126:175–213. doi: 10.1016/j.anifeedsci.2005.08.003. DOI
Vial F., Schärrer S., Reist M. Risk factors for whole carcass condemnations in the Swiss slaughter cattle population. PLoS ONE. 2015;10:e0122717. doi: 10.1371/journal.pone.0122717. PubMed DOI PMC
Ceccarelli M., Leprini E., Sechi P., Iulietto M.F., Grispoldi L., Goretti E., Cenci-Goga B.T. Analysis of the causes of the seizure and destruction of carcasses and organs in a slaughterhouse in central Italy in the 2010–2016 period. Ital. J. Food Saf. 2018;7:6899. doi: 10.4081/ijfs.2018.6899. PubMed DOI PMC
Torina A., Dara S., Marino A.M.F., Sparagano O.A.E., Vitale F., Reale S., Caracappa S. Study of gastrointestinal nematodes in Sicilian sheep and goats. Ann. N. Y. Acad. Sci. 2004;1026:187–194. doi: 10.1196/annals.1307.028. PubMed DOI
Fox N.J., Marion G., Davidson R.S., White P.C.L., Hutchings M.R. Modelling parasite transmission in a grazing system: The importance of host behaviour and immunity. PLoS ONE. 2013;8:e77996. doi: 10.1371/journal.pone.0077996. PubMed DOI PMC
Yiakoulaki M., Papanastasis V. Foraging behaviour of sheep and goats grazing on silvopastoral systems in Northern Greece. Options Méditerr. 2009;85:79–84.
Nincakova S., Vecerek V., Valkova L., Voslarova E., Kaluza M., Zavrelova V. Health status of slaughtered animals as indicated by post-mortem inspection at slaughterhouses. Acta Vet. 2022;91:99–106. doi: 10.2754/avb202291010099. DOI
Szkucik K., Pyz-Lukasik R., Szczepaniak K.O., Paszkiewicz W. Occurrence of gastrointestinal parasites in slaughter rabbits. Parasitol. 2014;113:59–64. doi: 10.1007/s00436-013-3625-7. PubMed DOI PMC
Krauze M., Ognik K., Mikulski D., Jankowski J. Assessment of neurodegenerative changes in turkeys fed diets with different proportions of arginine and methionine relative to lysine. Animals. 2022;12:1535. doi: 10.3390/ani12121535. PubMed DOI PMC
Salines M., Allain V., Roul H., Magras C., Le Bouquin S. Rates of and reasons for condemnation of poultry carcasses: Harmonised methodology at the slaughterhouse. Vet. Rec. 2017;180:516. PubMed
Mazanowski A. Hodowla i Chów Gęsi. Apra; Opole, Poland: 2012. 402p
Benard G., Pelletier J.F., Labie C., Talenton J.Y. Liver necrosis in fat geese and ducks—Cases and sanitary consequences. Rev. Med. Vet. 1992;143:435–442.
Tulayakul P., Mingkhwan R., Hananantachai H., Netvichian R., Khaodhiar S., Songserm T. Heavy metal (Cd and Pb) and aflatoxin contamination in tissues and eggs from free grazing ducks and their environment in central Thailand. Biol. Trace Elem. Res. 2018;186:514–520. doi: 10.1007/s12011-018-1321-2. PubMed DOI
Cova L., Mehrotra R., Wild C.P., Chutimataewin S., Cao S.F., Duflot A., Prave M., Yu S.Z., Montesano R., Trepo C. Duck hepatitis-b virus-infection, aflatoxin b-1 and liver-cancer in domestic chinese ducks. Brit. J. Cancer. 1994;69:104–109. doi: 10.1038/bjc.1994.16. PubMed DOI PMC
Li N., Hong T.Q., Wang Y., Wang Y.L., Yu K.X., Cai Y.M., Liu S.D., Wei L.M., Chai T.J. The pathogenicity of novel duck reovirus in Cherry Valley ducks. Vet. Microbiol. 2016;192:181–185. doi: 10.1016/j.vetmic.2016.07.015. PubMed DOI
Davail S., Rideau N., Bernadet M.D., Andre J.M., Guy G., Hoo-Paris R. Effects of dietary fructose on liver steatosis in overfed mule ducks. Horm. Metab. Res. 2005;37:32–35. doi: 10.1055/s-2005-861029. PubMed DOI
Bertsch G. Poultry: Liver Challenges Derived from the Diet. Veterinaria Digital. 2021. [(accessed on 31 January 2023)]. Available online: https://www.veterinariadigital.com/en/articulos/poultry-liver-challenges-derived-from-the-diet/
Hansen R.J., Walzem R.L. Avian fatty liver hemorrhagic syndrome: A comparative review. Adv. Vet. Sci. Comp. Med. 1993;37:451–468. PubMed
Verwoerd D.J. Ostrich diseases. Rev. Sci. Tech. Off. Int. Epiz. 2000;19:638–661. doi: 10.20506/rst.19.2.1235. PubMed DOI
Wieliczko A., Dzimira S., Mazurkiewicz M. Marek’s disease in flocks of layers and broilers. Med. Weter. 2002;58:144–147.
Rashid N., Bajwa M.A., Rafeeq M., Tariq M.M., Abbas F., Awan M.A., Khan M.A., Shahzad I., Rehman A., Ahmad Z. Prevalence of aflatoxicosis in broiler chickens in Quetta, Pakistan. Pak. J. Zool. 2013;45:1021–1026.
Phiri I.K., Phiri A.M., Harrison L.J.S. Serum antibody isotype responses of Fasciola-infected sheep and cattle to excretory and secretory products of Fasciola species. Vet. Parasitol. 2006;141:234–242. doi: 10.1016/j.vetpar.2006.05.019. PubMed DOI