Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
14-1289
Worldwide Cancer Research - United Kingdom
MC_U105178780
Medical Research Council - United Kingdom
PubMed
28779096
PubMed Central
PMC5544772
DOI
10.1038/s41598-017-07556-3
PII: 10.1038/s41598-017-07556-3
Knihovny.cz E-zdroje
- MeSH
- epitel metabolismus MeSH
- epitelové buňky metabolismus MeSH
- homeostáza * MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- protein ADAM10 metabolismus MeSH
- protein ADAM17 metabolismus MeSH
- proteolýza MeSH
- proteom * MeSH
- proteomika * metody MeSH
- sekvence aminokyselin MeSH
- serinové endopeptidasy MeSH
- serinové proteasy genetika metabolismus MeSH
- substrátová specifita MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- protein ADAM10 MeSH
- protein ADAM17 MeSH
- proteom * MeSH
- RHBDL2 protein, human MeSH Prohlížeč
- serinové endopeptidasy MeSH
- serinové proteasy MeSH
Rhomboids are intramembrane serine proteases conserved in all kingdoms of life. They regulate epidermal growth factor receptor signalling in Drosophila by releasing signalling ligands from their transmembrane tethers. Their functions in mammals are poorly understood, in part because of the lack of endogenous substrates identified thus far. We used a quantitative proteomics approach to investigate the substrate repertoire of rhomboid protease RHBDL2 in human cells. We reveal a range of novel substrates that are specifically cleaved by RHBDL2, including the interleukin-6 receptor (IL6R), cell surface protease inhibitor Spint-1, the collagen receptor tyrosine kinase DDR1, N-Cadherin, CLCP1/DCBLD2, KIRREL, BCAM and others. We further demonstrate that these substrates can be shed by endogenously expressed RHBDL2 and that a subset of them is resistant to shedding by cell surface metalloproteases. The expression profiles and identity of the substrates implicate RHBDL2 in physiological or pathological processes affecting epithelial homeostasis.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Instituto Gulbenkian de Ciência Lisbon Portugal
MRC Laboratory of Molecular Biology Cambridge CB2 2QH United Kingdom
Sir William Dunn School of Pathology Oxford OX1 3RE United Kingdom
Zobrazit více v PubMed
Urban S, Lee JR, Freeman M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J. 2002;21:4277–4286. doi: 10.1093/emboj/cdf434. PubMed DOI PMC
Lohi O, Urban S, Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr. Biol. 2004;14:236–241. PubMed
Fleig L, et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Molecular cell. 2012;47:558–569. doi: 10.1016/j.molcel.2012.06.008. PubMed DOI
Song W, et al. Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway. Nat. Commun. 2015;6:8022. doi: 10.1038/ncomms9022. PubMed DOI PMC
Wunderle L, et al. Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFalpha. Sci. Rep. 2016;6:27342. doi: 10.1038/srep27342. PubMed DOI PMC
Lemberg MK, Freeman M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 2007;17:1634–1646. doi: 10.1101/gr.6425307. PubMed DOI PMC
Pascall JC, Brown KD. Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochem. Biophys. Res. Commun. 2004;317:244–252. doi: 10.1016/j.bbrc.2004.03.039. PubMed DOI
Adrain C, et al. Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 2011;12:421–427. doi: 10.1038/embor.2011.50. PubMed DOI PMC
Noy PJ, Swain RK, Khan K, Lodhia P, Bicknell R. Sprouting angiogenesis is regulated by shedding of the C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed by rhomboid-like 2 protein (RHBDL2) FASEB J. 2016;30:2311–2323. doi: 10.1096/fj.201500122R. PubMed DOI
Menschikowski M, Hagelgans A, Eisenhofer G, Tiebel O, Siegert G. Reducing agents induce thrombomodulin shedding in human endothelial cells. Thromb. Res. 2010;126:e88–93. doi: 10.1016/j.thromres.2010.05.006. PubMed DOI
Atapattu L, Lackmann M, Janes PW. The role of proteases in regulating Eph/ephrin signaling. Cell Adhesion & Migration. 2014;8:294–307. doi: 10.4161/19336918.2014.970026. PubMed DOI PMC
Sahin U, et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol. 2004;164:769–779. doi: 10.1083/jcb.200307137. PubMed DOI PMC
Ong SE, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics. 2002;1:376–386. doi: 10.1074/mcp.M200025-MCP200. PubMed DOI
Higy M, Junne T, Spiess M. Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry. 2004;43:12716–12722. doi: 10.1021/bi048368m. PubMed DOI
Kall L, Krogh A, Sonnhammer EL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004;338:1027–1036. doi: 10.1016/j.jmb.2004.03.016. PubMed DOI
Junttila MR, Saarinen S, Schmidt T, Kast J, Westermarck J. Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics. 2005;5:1199–1203. doi: 10.1002/pmic.200400991. PubMed DOI
Strisovsky K, Sharpe HJ, Freeman M. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Molecular cell. 2009;36:1048–1059. doi: 10.1016/j.molcel.2009.11.006. PubMed DOI PMC
Zoll S, et al. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 2014;33:2408–2421. doi: 10.15252/embj.201489367. PubMed DOI PMC
Horiuchi K, et al. Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell. 2007;18:176–188. doi: 10.1091/mbc.E06-01-0014. PubMed DOI PMC
Hruz T, et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC
Cheng TL, et al. Functions of rhomboid family protease RHBDL2 and thrombomodulin in wound healing. J Invest Dermatol. 2011;131:2486–2494. doi: 10.1038/jid.2011.230. PubMed DOI
Conway K, Ruge F, Price P, Harding KG, Jiang WG. Hepatocyte growth factor regulation: an integral part of why wounds become chronic. Wound Repair Regen. 2007;15:683–692. doi: 10.1111/j.1524-475X.2007.00296.x. PubMed DOI
Hou G, Vogel W, Bendeck MP. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. Journal of Clinical Investigation. 2001;107:727–735. doi: 10.1172/JCI10720. PubMed DOI PMC
Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J. Leukoc. Biol. 2003;73:713–721. doi: 10.1189/jlb.0802397. PubMed DOI
Cheng TL, et al. RHBDL2 is a critical membrane protease for anoikis resistance in human malignant epithelial cells. ScientificWorldJournal. 2014;2014:902987. PubMed PMC
Logue SE, Cleary P, Saveljeva S, Samali A. New directions in ER stress-induced cell death. Apoptosis. 2013;18:537–546. doi: 10.1007/s10495-013-0818-6. PubMed DOI
Ribatti D, Crivellato E. “Sprouting angiogenesis”, a reappraisal. Dev. Biol. 2012;372:157–165. doi: 10.1016/j.ydbio.2012.09.018. PubMed DOI
Zhong X, Rescorla FJ. Cell surface adhesion molecules and adhesion-initiated signaling: understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell. Signal. 2012;24:393–401. doi: 10.1016/j.cellsig.2011.10.005. PubMed DOI
Oberst MD, et al. HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol. 2005;289:C462–470. doi: 10.1152/ajpcell.00076.2005. PubMed DOI
Huang HP, et al. Persistent elevation of hepatocyte growth factor activator inhibitors in cholangiopathies affects liver fibrosis and differentiation. Hepatology. 2012;55:161–172. doi: 10.1002/hep.24657. PubMed DOI
Marchand-Adam S, et al. Defect of pro-hepatocyte growth factor activation by fibroblasts in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2006;174:58–66. doi: 10.1164/rccm.200507-1074OC. PubMed DOI
Phin S, et al. Imbalance in the pro-hepatocyte growth factor activation system in bleomycin-induced lung fibrosis in mice. Am J Respir Cell Mol Biol. 2010;42:286–293. doi: 10.1165/rcmb.2008-0305OC. PubMed DOI
Leitinger B. Transmembrane collagen receptors. Annu. Rev. Cell Dev. Biol. 2011;27:265–290. doi: 10.1146/annurev-cellbio-092910-154013. PubMed DOI
Carafoli F, Hohenester E. Collagen recognition and transmembrane signalling by discoidin domain receptors. Biochim. Biophys. Acta. 2013;1834:2187–2194. doi: 10.1016/j.bbapap.2012.10.014. PubMed DOI PMC
Hayashida K, Bartlett AH, Chen Y, Park PW. Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken) 2010;293:925–937. doi: 10.1002/ar.20757. PubMed DOI PMC
Brambrink T, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell. 2008;2:151–159. doi: 10.1016/j.stem.2008.01.004. PubMed DOI PMC
Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Nilse L, et al. Yeast membrane proteomics using leucine metabolic labelling: Bioinformatic data processing and exemplary application to the ER-intramembrane protease Ypf1. Biochim. Biophys. Acta. 2016;1864:1363–1371. doi: 10.1016/j.bbapap.2016.07.002. PubMed DOI
Vizcaino JA, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41:D1063–1069. doi: 10.1093/nar/gks1262. PubMed DOI PMC
Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations