The Distinct Function and Localization of METTL3/METTL14 and METTL16 Enzymes in Cardiomyocytes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07384S
the Czech Science Foundation
ICO: 68081707
Strategie AV21, program Qualitas
PubMed
33143367
PubMed Central
PMC7663386
DOI
10.3390/ijms21218139
PII: ijms21218139
Knihovny.cz E-zdroje
- Klíčová slova
- METTL-like enzymes, RNA methylation, cardiomyogenesis, epigenetics, epitranscriptomics,
- MeSH
- adenosin analogy a deriváty genetika metabolismus MeSH
- buněčná diferenciace MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- kardiomyocyty cytologie metabolismus MeSH
- lidé MeSH
- methyltransferasy metabolismus MeSH
- myší embryonální kmenové buňky cytologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- stárnutí metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosin MeSH
- methyltransferasy MeSH
- METTL14 protein, human MeSH Prohlížeč
- Mettl14 protein, mouse MeSH Prohlížeč
- METTL16 protein, human MeSH Prohlížeč
- Mettl3 protein, mouse MeSH Prohlížeč
It has become evident that epitranscriptome events, mediated by specific enzymes, regulate gene expression and, subsequently, cell differentiation processes. We show that methyltransferase-like proteins METTL3/METTL14 and N6-adenosine methylation (m6A) in RNAs are homogeneously distributed in embryonic hearts, and histone deacetylase (HDAC) inhibitors valproic acid and Trichostatin A (TSA) up-regulate METTL3/METTL14 proteins. The levels of METTL3 in mouse adult hearts, isolated from male and female animals, were lower in the aorta and pulmonary trunks when compared with atria, but METT14 was up-regulated in the aorta and pulmonary trunk, in comparison with ventriculi. Aging caused METTL3 down-regulation in aorta and atria in male animals. Western blot analysis in differentiated mouse embryonic stem cells (mESCs), containing 10-30 percent of cardiomyocytes, showed METTL3/METTL14 down-regulation, while the differentiation-induced increased level of METTL16 was observed in both wild type (wt) and HDAC1 depleted (dn) cells. In parallel, experimental differentiation in especially HDAC1 wild type cells was accompanied by depletion of m6A in RNA. Immunofluorescence analysis of individual cells revealed the highest density of METTL3/METTL14 in α-actinin positive cardiomyocytes when compared with the other cells in the culture undergoing differentiation. In both wt and HDAC1 dn cells, the amount of METTL16 was also up-regulated in cardiomyocytes when compared to co-cultivated cells. Together, we showed that distinct anatomical regions of the mouse adult hearts are characterized by different levels of METTL3 and METTL14 proteins, which are changed during aging. Experimental cell differentiation was also accompanied by changes in METTL-like proteins and m6A in RNA; in particular, levels and distribution patterns of METTL3/METTL14 proteins were different from the same parameters studied in the case of the METTL16 protein.
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Zobrazit více v PubMed
Sun W.J., Li J.H., Liu S., Wu J., Zhou H., Qu L.H., Yang J.H. RMBase: A resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res. 2016;44:D259–D265. doi: 10.1093/nar/gkv1036. PubMed DOI PMC
Fu Y., Dominissini D., Rechavi G., He C. Gene expression regulation mediated through reversible m 6 A RNA methylation. Nat. Rev. Genet. 2014;15:293–306. doi: 10.1038/nrg3724. PubMed DOI
Yue Y., Liu J., He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29:1343–1355. doi: 10.1101/gad.262766.115. PubMed DOI PMC
Patil D.P., Chen C.K., Pickering B.F., Chow A., Jackson C., Guttman M., Jaffrey S.R. M6 A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537:369–373. doi: 10.1038/nature19342. PubMed DOI PMC
Ping X.L., Sun B.F., Wang L., Xiao W., Yang X., Wang W.J., Adhikari S., Shi Y., Lv Y., Chen Y.S., et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–189. doi: 10.1038/cr.2014.3. PubMed DOI PMC
Carroll S.M., Narayan P., Rottman F.M. N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Mol. Cell. Biol. 1990;10:4456–4465. doi: 10.1128/MCB.10.9.4456. PubMed DOI PMC
Salditt-Georgieff M., Jelinek W., Darnell J.E., Furuichi Y., Morgan M., Shatkin A. Methyl labeling of HeLa cell hnRNA: A comparison with mRNA. Cell. 1976;7:227–237. doi: 10.1016/0092-8674(76)90022-2. PubMed DOI
Schöller E., Weichmann F., Treiber T., Ringle S., Treiber N., Flatley A., Feederle R., Bruckmann A., Meister G. Interactions, localization, and phosphorylation of the m6A generating METTL3–METTL14–WTAP complex. RNA. 2018;24:499–512. doi: 10.1261/rna.064063.117. PubMed DOI PMC
Bokar J.A., Shambaugh M.E., Polayes D., Matera A.G., Rottman F.M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3:1233–1247. PubMed PMC
Liu J., Yue Y., Han D., Wang X., Fu Y., Zhang L., Jia G., Yu M., Lu Z., Deng X., et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 2014;10:93–95. doi: 10.1038/nchembio.1432. PubMed DOI PMC
Hu Y., Wang S., Liu J., Huang Y., Gong C., Liu J., Xiao J., Yang S. New sights in cancer: Component and function of N6-methyladenosine modification. Biomed. Pharmacother. 2020;122:109694. doi: 10.1016/j.biopha.2019.109694. PubMed DOI
Schwartz S., Mumbach M.R., Jovanovic M., Wang T., Maciag K., Bushkin G.G., Mertins P., Ter-Ovanesyan D., Habib N., Cacchiarelli D., et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 2014;8:284–296. doi: 10.1016/j.celrep.2014.05.048. PubMed DOI PMC
Knuckles P., Lence T., Haussmann I.U., Jacob D., Kreim N., Carl S.H., Masiello I., Hares T., Villaseñor R., Hess D., et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor RbM15/spenito to the m6 a machinery component Wtap/Fl(2)d. Genes Dev. 2018;32:415–429. doi: 10.1101/gad.309146.117. PubMed DOI PMC
Warda A.S., Kretschmer J., Hackert P., Lenz C., Urlaub H., Höbartner C., Sloan K.E., Bohnsack M.T. Human METTL16 is a N6 -methyladenosine (m 6 A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18:2004–2014. doi: 10.15252/embr.201744940. PubMed DOI PMC
Pendleton K.E., Chen B., Liu K., Hunter O.V., Xie Y., Tu B.P., Conrad N.K. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169:824–835.e14. doi: 10.1016/j.cell.2017.05.003. PubMed DOI PMC
Jia G., Fu Y., Zhao X., Dai Q., Zheng G., Yang Y., Yi C., Lindahl T., Pan T., Yang Y.G., et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 2011;7:885–887. doi: 10.1038/nchembio.687. PubMed DOI PMC
Zheng G., Dahl J.A., Niu Y., Fedorcsak P., Huang C.M., Li C.J., Vågbø C.B., Shi Y., Wang W.L., Song S.H., et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell. 2013;49:18–29. doi: 10.1016/j.molcel.2012.10.015. PubMed DOI PMC
Kurowski M.A., Bhagwat A.S., Papaj G., Bujnicki J.M. Phylogenomic identification of five new human homologs of the DNA repair enzyme AlkB. BMC Genomics. 2003;4:48. doi: 10.1186/1471-2164-4-48. PubMed DOI PMC
Fu Y., Dai Q., Zhang W., Ren J., Pan T., He C. The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the wobble position of tRNA. Angew. Chemie Int. Ed. 2010;49:8885–8888. doi: 10.1002/anie.201001242. PubMed DOI PMC
Gerken T., Girard C.A., Tung Y.C.L., Webby C.J., Saudek V., Hewitson K.S., Yeo G.S.H., McDonough M.A., Cunliffe S., McNeill L.A., et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318:1469–1472. doi: 10.1126/science.1151710. PubMed DOI PMC
Fu Y., Jia G., Pang X., Wang R.N., Wang X., Li C.J., Smemo S., Dai Q., Bailey K.A., Nobrega M.A., et al. FTO-mediated formation of N6-hydroxymethyladenosine and N 6-formyladenosine in mammalian RNA. Nat. Commun. 2013;4:1798. doi: 10.1038/ncomms2822. PubMed DOI PMC
Ito S., Shen L., Dai Q., Wu S.C., Collins L.B., Swenberg J.A., He C., Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–1303. doi: 10.1126/science.1210597. PubMed DOI PMC
Ito S., Dalessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129–1133. doi: 10.1038/nature09303. PubMed DOI PMC
Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935. doi: 10.1126/science.1170116. PubMed DOI PMC
Fustin J.M., Doi M., Yamaguchi Y., Hida H., Nishimura S., Yoshida M., Isagawa T., Morioka M.S., Kakeya H., Manabe I., et al. XRNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155:793. doi: 10.1016/j.cell.2013.10.026. PubMed DOI
Liu N., Dai Q., Zheng G., He C., Parisien M., Pan T. N6 -methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–564. doi: 10.1038/nature14234. PubMed DOI PMC
Xiao W., Adhikari S., Dahal U., Chen Y.S., Hao Y.J., Sun B.F., Sun H.Y., Li A., Ping X.L., Lai W.Y., et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell. 2016;61:507–519. doi: 10.1016/j.molcel.2016.01.012. PubMed DOI
David C.J., Chen M., Assanah M., Canoll P., Manley J.L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010;463:364–368. doi: 10.1038/nature08697. PubMed DOI PMC
König J., Zarnack K., Rot G., Curk T., Kayikci M., Zupan B., Turner D.J., Luscombe N.M., Ule J. ICLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 2010;17:909–915. doi: 10.1038/nsmb.1838. PubMed DOI PMC
Wang Y., Li Y., Toth J.I., Petroski M.D., Zhang Z., Zhao J.C. N6 -methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 2014;16:191–198. doi: 10.1038/ncb2902. PubMed DOI PMC
Wang X., Lu Z., Gomez A., Hon G.C., Yue Y., Han D., Fu Y., Parisien M., Dai Q., Jia G., et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–120. doi: 10.1038/nature12730. PubMed DOI PMC
Svobodová Kovaříková A., Stixová L., Kovařík A., Komůrková D., Legartová S., Fagherazzi P., Bártová E. N6-Adenosine Methylation in RNA and a reduced m3G/TMG level in non-coding RNAs appear at microirradiation-induced DNA lesions. Cells. 2020;9:360. doi: 10.3390/cells9020360. PubMed DOI PMC
Geula S., Moshitch-Moshkovitz S., Dominissini D., Mansour A.A.F., Kol N., Salmon-Divon M., Hershkovitz V., Peer E., Mor N., Manor Y.S., et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347:1002–1006. doi: 10.1126/science.1261417. PubMed DOI
Batista P.J., Molinie B., Wang J., Qu K., Zhang J., Li L., Bouley D.M., Lujan E., Haddad B., Daneshvar K., et al. M6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014;15:707–719. doi: 10.1016/j.stem.2014.09.019. PubMed DOI PMC
Aguilo F., Zhang F., Sancho A., Fidalgo M., Di Cecilia S., Vashisht A., Lee D.F., Chen C.H., Rengasamy M., Andino B., et al. Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell. 2015;17:689–704. doi: 10.1016/j.stem.2015.09.005. PubMed DOI PMC
Zhang C., Samanta D., Lu H., Bullen J.W., Zhang H., Chen I., He X., Semenza G.L. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc. Natl. Acad. Sci. USA. 2016;113:E2047–E2056. doi: 10.1073/pnas.1602883113. PubMed DOI PMC
Zupkovitz G., Tischler J., Posch M., Sadzak I., Ramsauer K., Egger G., Grausenburger R., Schweifer N., Chiocca S., Decker T., et al. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell. Biol. 2006;26:7913–7928. doi: 10.1128/MCB.01220-06. PubMed DOI PMC
Lagger G., O’Carroll D., Rembold M., Khier H., Tischler J., Weitzer G., Schuettengruber B., Hauser C., Brunmeir R., Jenuwein T., et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 2002;21:2672–2681. doi: 10.1093/emboj/21.11.2672. PubMed DOI PMC
Montgomery R.L., Davis C.A., Potthoff M.J., Haberland M., Fielitz J., Qi X., Hill J.A., Richardson J.A., Olson E.N. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007;21:1790–1802. doi: 10.1101/gad.1563807. PubMed DOI PMC
Maltsev V.A., Rohwedel J., Hescheler J., Wobus A.M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 1993;44:41–50. doi: 10.1016/0925-4773(93)90015-P. PubMed DOI
Arcidiacono O.A., Krejčí J., Suchánková J., Bártová E. Deacetylation of histone H4 accompanying cardiomyogenesis is weakened in HDAC1-depleted ES cells. Int. J. Mol. Sci. 2018;19:2425. doi: 10.3390/ijms19082425. PubMed DOI PMC
Siciliano M., Mettimano M., Dondolini-Poli A., Ballarin S., Migneco A., Annese R., Fazzari L., Fedeli P., Montebelli M.R., Zuppi C., et al. Troponin I serum concentration: A new marker of left ventricular hypertrophy in patients with essential hypertension. Ital. Hear. J. 2000;1:532–535. PubMed
Wobus A.M., Wallukat G., Hescheler J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation. 1991;48:173–182. doi: 10.1111/j.1432-0436.1991.tb00255.x. PubMed DOI
Wang Y., Li Y., Yue M., Wang J., Kumar S., Wechsler-Reya R.J., Zhang Z., Ogawa Y., Kellis M., Duester G., et al. N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat. Neurosci. 2018;21:195–206. doi: 10.1038/s41593-017-0057-1. PubMed DOI PMC
Huang H., Weng H., Zhou K., Wu T., Zhao B.S., Sun M., Chen Z., Deng X., Xiao G., Auer F., et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature. 2019;567:414–419. doi: 10.1038/s41586-019-1016-7. PubMed DOI PMC
Mendel M., Chen K.-M., Homolka D., Gos P., Pandey R.R., McCarthy A.A., Pillai R.S. Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic development. Mol Cell. 2018;71:986–1000. doi: 10.1016/j.molcel.2018.08.004. PubMed DOI PMC
Nance D.J., Satterwhite E.R., Bhaskar B., Misra S., Carraway K.R., Mansfield K.D. Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS ONE. 2020;15:e0227647. doi: 10.1371/journal.pone.0227647. PubMed DOI PMC
Doxtader K.A., Wang P., Scarborough A.M., Seo D., Conrad N.K., Nam Y. Structural basis for regulation of METTL16, an S-Adenosylmethionine Homeostasis Factor. Mol. Cell. 2018;71:1001–1011.e4. doi: 10.1016/j.molcel.2018.07.025. PubMed DOI PMC
Dorn L.E., Lasman L., Chen J., Xu X., Hund T.J., Medvedovic M., Hanna J.H., Van Berlo J.H., Accornero F. The N-Methyladenosine mRNA Methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 2019;139:533–545. doi: 10.1161/CIRCULATIONAHA.118.036146. PubMed DOI PMC
Kmietczyk V., Riechert E., Kalinski L., Boileau E., Malovrh E., Malone B., Gorska A., Hofmann C., Varma E., Jürgensen L., et al. M 6 A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci. Alliance. 2019;2 doi: 10.26508/lsa.201800233. PubMed DOI PMC
Berulava T., Buchholz E., Elerdashvili V., Pena T., Islam M.R., Lbik D., Mohamed B.A., Renner A., von Lewinski D., Sacherer M., et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail. 2020;22:54–66. doi: 10.1002/ejhf.1672. PubMed DOI
Mathiyalagan P., Adamiak M., Mayourian J., Sassi Y., Liang Y., Agarwal N., Jha D., Zhang S., Kohlbrenner E., Chepurko E., et al. FTO-dependent N-Methyladenosine regulates cardiac function during remodeling and repair. Circulation. 2019;139:518–532. doi: 10.1161/CIRCULATIONAHA.118.033794. PubMed DOI PMC
Gusterson R.J., Jazrawi E., Adcock I.M., Latchman D.S. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J. Biol. Chem. 2003;278:6838–6847. doi: 10.1074/jbc.M211762200. PubMed DOI
Antos C.L., McKinsey T.A., Dreitz M., Hollingsworth L.M., Zhang C.L., Schreiber K., Rindt H., Gorczynski R.J., Olson E.N. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J. Biol. Chem. 2003;278:28930–28937. doi: 10.1074/jbc.M303113200. PubMed DOI
Cao D.J., Wang Z.V., Battiprolu P.K., Jiang N., Morales C.R., Kong Y., Rothermel B.A., Gillette T.G., Hill J.A. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc. Natl. Acad. Sci. USA. 2011;108:4123–4128. doi: 10.1073/pnas.1015081108. PubMed DOI PMC
Liu F., Levin M.D., Petrenko N.B., Lu M.M., Wang T., Yuan L.J., Stout A.L., Epstein J.A., Patel V.V. Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J. Mol. Cell. Cardiol. 2008;45:715–723. doi: 10.1016/j.yjmcc.2008.08.015. PubMed DOI PMC
McKinsey T.A. Therapeutic potential for HDAC inhibitors in the heart. Annu. Rev. Pharmacol. Toxicol. 2012;52:303–319. doi: 10.1146/annurev-pharmtox-010611-134712. PubMed DOI
Mendis S., Puska B.N. WHO | Global Atlas on Cardiovascular Disease Prevention and Control. [(accessed on 26 June 2020)]; Available online: http://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en/