Deacetylation of Histone H4 Accompanying Cardiomyogenesis is Weakened in HDAC1-Depleted ES Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30115891
PubMed Central
PMC6121517
DOI
10.3390/ijms19082425
PII: ijms19082425
Knihovny.cz E-zdroje
- Klíčová slova
- HDAC1, cardiomyocytes, embryonic stem cells, epigenetics, histones H3 and H4,
- MeSH
- acetylace MeSH
- buněčná diferenciace účinky léků MeSH
- delece genu * MeSH
- embryo savčí cytologie MeSH
- embryoidní tělíska účinky léků metabolismus MeSH
- histony metabolismus MeSH
- inhibitory histondeacetylas farmakologie MeSH
- kardiomyocyty cytologie účinky léků metabolismus MeSH
- metylace MeSH
- myší embryonální kmenové buňky cytologie účinky léků metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- organogeneze * účinky léků MeSH
- posttranslační úpravy proteinů účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony MeSH
- inhibitory histondeacetylas MeSH
Cell differentiation into cardiomyocytes requires activation of differentiation-specific genes and epigenetic factors that contribute to these physiological processes. This study is focused on the in vitro differentiation of mouse embryonic stem cells (mESCs) induced into cardiomyocytes. The effects of clinically promising inhibitors of histone deacetylases (HDACi) on mESC cardiomyogenesis and on explanted embryonic hearts were also analyzed. HDAC1 depletion caused early beating of cardiomyocytes compared with those of the wild-type (wt) counterpart. Moreover, the adherence of embryonic bodies (EBs) was reduced in HDAC1 double knockout (dn) mESCs. The most important finding was differentiation-specific H4 deacetylation observed during cardiomyocyte differentiation of wt mESCs, while H4 deacetylation was weakened in HDAC1-depleted cells induced to the cardiac pathway. Analysis of the effect of HDACi showed that Trichostatin A (TSA) is a strong hyperacetylating agent, especially in wt mESCs, but only SAHA reduced the size of the beating areas in EBs that originated from HDAC1 dn mESCs. Additionally, explanted embryonic hearts (e15) responded to treatment with HDACi: all of the tested HDACi (TSA, SAHA, VPA) increased the levels of H3K9ac, H4ac, H4K20ac, and pan-acetylated lysines in embryonic hearts. This observation shows that explanted tissue can be maintained in a hyperacetylation state several hours after excision, which appears to be useful information from the view of transplantation strategy and the maintenance of gene upregulation via acetylation in tissue intended for transplantation.
Zobrazit více v PubMed
Kimes B.W., Brandt B.L. Properties of a clonal muscle cell line from rat heart. Exp. Cell Res. 1976;98:367–381. doi: 10.1016/0014-4827(76)90447-X. PubMed DOI
Jaffredo T., Chestier A., Bachnou N., Dieterlen-Lièvre F. MC29-immortalized clonal avian heart cell lines can partially differentiate in vitro. Exp. Cell Res. 1991;192:481–491. doi: 10.1016/0014-4827(91)90067-5. PubMed DOI
Field L.J. Transgenic mice in cardiovascular research. Annu. Rev. Physiol. 1993;55:97–114. doi: 10.1146/annurev.ph.55.030193.000525. PubMed DOI
Sen A., Dunnmon P., Henderson S.A., Gerard R.D., Chien K.R. Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T. antigen. J. Biol. Chem. 1988;263:19132–19136. PubMed
White S.M., Claycomb W.C. Embryonic stem cells form an organized, functional cardiac conduction system in vitro. Am. J. Physiol. Heart Circ. Physiol. 2005;288:H670–H679. doi: 10.1152/ajpheart.00841.2004. PubMed DOI
Wobus A.M., Kaomei G., Shan J., Wellner M.C., Rohwedel J., Guanju J., Fleischmann B., Katus H.A., Hescheler J., Franz W.M. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 1997;29:1525–1539. doi: 10.1006/jmcc.1997.0433. PubMed DOI
Wobus A.M. Potential of embryonic stem cells. Mol. Aspects Med. 2001;22:149–164. doi: 10.1016/S0098-2997(01)00006-1. PubMed DOI
Rohwedel J., Maltsev V., Bober E., Arnold H.H., Hescheler J., Wobus A.M. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: Developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 1994;164:87–101. doi: 10.1006/dbio.1994.1182. PubMed DOI
Strübing C., Ahnert-Hilger G., Shan J., Wiedenmann B., Hescheler J., Wobus A.M. Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 1995;53:275–287. doi: 10.1016/0925-4773(95)00446-8. PubMed DOI
Risau W., Sariola H., Zerwes H.-G., Sasse J., Ekblom P., Kemler R., Doetschman T. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development. 1988;102:471–478. PubMed
Bagutti C., Wobus A.M., Fässler R., Watt F.M. Differentiation of embryonal stem cells into keratinocytes: Comparison of wild-type and β1integrin-deficient cells. Dev. Biol. 1996;179:184–196. doi: 10.1006/dbio.1996.0250. PubMed DOI
Fassler R., Rohwedel J., Maltsev V., Bloch W., Lentini S., Guan K., Gullberg D., Hescheler J., Addicks K., Wobus A.M. Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta1 integrin. J. Cell Sci. 1996;109:2989–2999. PubMed
Fässler R., Sasaki T., Timpl R., Chu M.L., Werner S. Differential regulation of fibulin, tenascin-C., and nidogen expression during wound healing of normal and glucocorticoid-treated mice. Exp. Cell Res. 1996;222:111–116. doi: 10.1006/excr.1996.0014. PubMed DOI
Hescheler J., Fleischmann B.K., Lentini S., Maltsev V.A., Rohwedel J., Wobus A.M., Addicks K. Embryonic stem cells: A model to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. 1997;36:149–162. doi: 10.1016/S0008-6363(97)00193-4. PubMed DOI
Davies M.P., An R.H., Doevendans P., Kubalak S., Chien K.R., Kass R.S. Developmental changes in ionic channel activity in the embryonic murine heart. Circ. Res. 1996;78:15–25. doi: 10.1161/01.RES.78.1.15. PubMed DOI
Schaub M.C., Hefti M.A., Zuellig R.A., Morano I. Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms. Cardiovasc. Res. 1998;37:381–404. doi: 10.1016/S0008-6363(97)00258-7. PubMed DOI
Rodenhiser D., Mann M. Epigenetics and human disease: Translating basic biology into clinical applications. Can. Med. Assoc. J. 2006;174:341–348. doi: 10.1503/cmaj.050774. PubMed DOI PMC
Yanazume T., Hasegawa K., Morimoto T., Kawamura T., Wada H., Matsumori A., Kawase Y., Hirai M., Kita T. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol. Cell. Biol. 2003;23:3593–3606. doi: 10.1128/MCB.23.10.3593-3606.2003. PubMed DOI PMC
Hohl M., Wagner M., Reil J.C., Müller S.A., Tauchnitz M., Zimmer A.M., Lehmann L.H., Thiel G., Böhm M., Backs J., Maack C. HDAC4 controls histone methylation in response to elevated cardiac load. J. Clin. Investig. 2013;123:1359–1370. doi: 10.1172/JCI61084. PubMed DOI PMC
Banerjee A. A review of family history of cardiovascular disease: Risk factor and research tool. Int. J. Clin. Pract. 2012;66:536–543. doi: 10.1111/j.1742-1241.2012.02908.x. PubMed DOI
World Health Organization, Mendis S., Puska P., Norrving B. Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization; 2011.
Ordovás J.M., Smith C.E. Epigenetics and cardiovascular disease. Nat. Rev. Cardiol. 2010;7:510–519. doi: 10.1038/nrcardio.2010.104. PubMed DOI PMC
Gusterson R.J., Jazrawi E., Adcock I.M., Latchman D.S. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J. Biol. Chem. 2003;278:6838–6847. doi: 10.1074/jbc.M211762200. PubMed DOI
Antos C.L., McKinsey T.A., Dreitz M., Hollingsworth L.M., Zhang C.L., Schreiber K., Rindt H., Gorczynski R.J., Olson E.N. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J. Biol. Chem. 2003;278:28930–28937. doi: 10.1074/jbc.M303113200. PubMed DOI
Cao D.J., Wang Z.V., Battiprolu P.K., Jiang N., Morales C.R., Kong Y., Rothermel B.A., Gillette T.G., Hill J.A. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc. Natl. Acad. Sci. USA. 2011;108:4123–4128. doi: 10.1073/pnas.1015081108. PubMed DOI PMC
Liu F., Levin M.D., Petrenko N.B., Lu M.M., Wang T., Yuan L.J., Stout A.L., Epstein J.A., Patel V.V. Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J. Mol. Cell. Cardiol. 2008;45:715–723. doi: 10.1016/j.yjmcc.2008.08.015. PubMed DOI PMC
Montgomery R.L., Davis C.A., Potthoff M.J., Haberland M., Fielitz J., Qi X., Hill J.A., Richardson J.A., Olson E.N. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007;21:1790–1802. doi: 10.1101/gad.1563807. PubMed DOI PMC
Montgomery R.L., Potthoff M.J., Haberland M., Qi X., Matsuzaki S., Humphries K.M., Richardson J.A., Bassel-Duby R., Olson E.N. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Investig. 2008;118:3588–3597. doi: 10.1172/JCI35847. PubMed DOI PMC
McKinsey T.A. Therapeutic Potential for HDAC Inhibitors in the Heart. Annu. Rev. Pharmacol. Toxicol. 2012;52:303–319. doi: 10.1146/annurev-pharmtox-010611-134712. PubMed DOI
Kawamura T., Ono K., Morimoto T., Wada H., Hirai M., Hidaka K., Morisaki T., Heike T., Nakahata T., Kita T., et al. Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J. Biol. Chem. 2005;280:19682–19688. doi: 10.1074/jbc.M412428200. PubMed DOI
Iezzi S., Di Padova M., Serra C., Caretti G., Simone C., Maklan E., Minetti G., Zhao P., Hoffman E.P., Puri P.L., et al. Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin. Dev. Cell. 2004;6:673–684. doi: 10.1016/S1534-5807(04)00107-8. PubMed DOI
Eom G.H., Nam Y.S., Oh J.G., Choe N., Min H.K., Yoo E.K., Kang G., Nguyen V.H., Min J.J., Kim J.K., et al. Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ. Res. 2014;114:1133–1143. doi: 10.1161/CIRCRESAHA.114.303429. PubMed DOI
Zhang D., Wu C.T., Qi X.Y., Meijering R.A.M., Hoogstra-Berends F., Tadevosyan A., Deniz G.C., Durdu S., Akar A.R., Sibon O.C.M., et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation. Circulation. 2014;129:346–358. doi: 10.1161/CIRCULATIONAHA.113.005300. PubMed DOI
Glozak M.A., Sengupta N., Zhang X., Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23. doi: 10.1016/j.gene.2005.09.010. PubMed DOI
Tao R., De Zoeten E.F., Özkaynak E., Chen C., Wang L., Porrett P.M., Li B., Turka L.A., Olson E.N., Greene M.I., et al. Deacetylase inhibition promotes the generation and function of regulatory T. cells. Nat. Med. 2007;13:1299–1307. doi: 10.1038/nm1652. PubMed DOI
Doetschman T.C., Eistetter H., Katz M., Schmidt W., Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 1985;87:27–45. doi: 10.1263/jbb.103.389. PubMed DOI
Zupkovitz G., Grausenburger R., Brunmeir R., Senese S., Tischler J., Jurkin J., Rembold M., Meunier D., Egger G., Lagger S., et al. The Cyclin-Dependent Kinase Inhibitor p21 Is a Crucial Target for Histone Deacetylase 1 as a Regulator of Cellular Proliferation. Mol. Cell. Biol. 2010;30:1171–1181. doi: 10.1128/MCB.01500-09. PubMed DOI PMC
Kudová J., Procházková J., Vašiček O., Perečko T., Sedláčková M., Pešl M., Pacherník J., Kubala L. HIF-1alpha deficiency attenuates the cardiomyogenesis of mouse embryonic stem cells. PLoS ONE. 2016;11:e0158358. doi: 10.1371/journal.pone.0158358. PubMed DOI PMC
Večeřa J., Bártová E., Krejčí J., Legartová S., Komůrková D., Rudá-Kučerová J., Štark T., Dražanová E., Kašpárek T., Šulcová A., et al. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals. J. Cell. Physiol. 2018;233:530–548. doi: 10.1002/jcp.25914. PubMed DOI PMC
Krejčí J., Harničarová A., Kůrová J., Uhlířová R., Kozubek S., Legartová S., Hájek R., Bártová E. Nuclear organization of PML bodies in leukaemic and multiple myeloma cells. Leuk. Res. 2008;32:1866–1877. doi: 10.1016/j.leukres.2008.04.021. PubMed DOI
Krejčí J., Legartová S., Bártová E. Neural Differentiation in HDAC1-Depleted Cells Is Accompanied by Coilin Downregulation and the Accumulation of Cajal Bodies in Nucleoli. Stem Cells Int. 2017;2017:1–13. doi: 10.1155/2017/1021240. PubMed DOI PMC
Legartová S., Suchánková J., Krejčí J., Kovaříková A., Bártová E. Advanced Confocal Microscopy Techniques to Study Protein-protein Interactions and Kinetics at DNA Lesions. J. Vis. Exp. 2017 doi: 10.3791/55999. PubMed DOI PMC