HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27355368
PubMed Central
PMC4927095
DOI
10.1371/journal.pone.0158358
PII: PONE-D-16-12320
Knihovny.cz E-zdroje
- MeSH
- aktinin metabolismus MeSH
- buněčná diferenciace MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa genetika metabolismus MeSH
- genový knockout MeSH
- hypoxie buňky MeSH
- kardiomyocyty cytologie metabolismus MeSH
- kyslík chemie MeSH
- lehké řetězce myosinu metabolismus MeSH
- myší embryonální kmenové buňky cytologie metabolismus MeSH
- myši MeSH
- regenerace MeSH
- srdce embryologie MeSH
- stanovení celkové genové exprese MeSH
- těžké řetězce myosinu metabolismus MeSH
- troponin T metabolismus MeSH
- vývoj svalů * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktinin MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- Hif1a protein, mouse MeSH Prohlížeč
- kyslík MeSH
- lehké řetězce myosinu MeSH
- Mlc2a protein, mouse MeSH Prohlížeč
- těžké řetězce myosinu MeSH
- troponin T MeSH
Cardiac cell formation, cardiomyogenesis, is critically dependent on oxygen availability. It is known that hypoxia, a reduced oxygen level, modulates the in vitro differentiation of pluripotent cells into cardiomyocytes via hypoxia inducible factor-1alpha (HIF-1α)-dependent mechanisms. However, the direct impact of HIF-1α deficiency on the formation and maturation of cardiac-like cells derived from mouse embryonic stem cells (mESC) in vitro remains to be elucidated. In the present study, we demonstrated that HIF-1α deficiency significantly altered the quality and quantity of mESC-derived cardiomyocytes. It was accompanied with lower mRNA and protein levels of cardiac cell specific markers (myosin heavy chains 6 and 7) and with a decreasing percentage of myosin heavy chain α and β, and cardiac troponin T-positive cells. As to structural aspects of the differentiated cardiomyocytes, the localization of contractile proteins (cardiac troponin T, myosin heavy chain α and β) and the organization of myofibrils were also different. Simultaneously, HIF-1α deficiency was associated with a lower percentage of beating embryoid bodies. Interestingly, an observed alteration in the in vitro differentiation scheme of HIF-1α deficient cells was accompanied with significantly lower expression of the endodermal marker (hepatic nuclear factor 4 alpha). These findings thus suggest that HIF-1α deficiency attenuates spontaneous cardiomyogenesis through the negative regulation of endoderm development in mESC differentiating in vitro.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Biophysics Academy of Sciences of the Czech Republic Brno Czech Republic
Institute of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation. 2000;102(20 Suppl 4):IV14–23. Epub 2000/11/18. . PubMed
Krishnan J, Ahuja P, Bodenmann S, Knapik D, Perriard E, Krek W, et al. Essential role of developmentally activated hypoxia-inducible factor 1alpha for cardiac morphogenesis and function. Circ Res. 2008;103(10):1139–46. Epub 2008/10/14. 10.1161/01.RES.0000338613.89841.c1 . PubMed DOI
Medley TL, Furtado M, Lam NT, Idrizi R, Williams D, Verma PJ, et al. Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/beta-catenin signaling. PLoS One. 2013;8(11):e80280 Epub 2013/11/23. 10.1371/journal.pone.0080280 PubMed DOI PMC
Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309. Epub 2010/10/23. 10.1016/j.molcel.2010.09.022 PubMed DOI PMC
Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–74. Epub 2003/12/04. PubMed PMC
Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4. Epub 1995/06/06. PubMed PMC
Gonzalez IR, Moreno-Manzano V, Rodriguez-Jimenez FJ, Sepulveda P, Sanchez-Puelles JM. The biology of HIFalpha proteins in cell differentiation and disease. Vitam Horm. 2011;87:367–79. Epub 2011/12/01. 10.1016/B978-0-12-386015-6.00036-6 . PubMed DOI
Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A. 1997;94(9):4273–8. Epub 1997/04/29. PubMed PMC
Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2003;17(2):271–3. Epub 2002/12/20. 10.1096/fj.02-0445fje . PubMed DOI
Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12(2):149–62. Epub 1998/03/07. PubMed PMC
Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet. 2003;35(4):331–40. Epub 2003/11/11. 10.1038/ng1266 . PubMed DOI
Ng KM, Lee YK, Chan YC, Lai WH, Fung ML, Li RA, et al. Exogenous expression of HIF-1 alpha promotes cardiac differentiation of embryonic stem cells. J Mol Cell Cardiol. 2010;48(6):1129–37. Epub 2010/02/02. 10.1016/j.yjmcc.2010.01.015 . PubMed DOI
Sun X, Pang L, Shi M, Huang J, Wang Y. HIF2alpha induces cardiomyogenesis via Wnt/beta-catenin signaling in mouse embryonic stem cells. J Transl Med. 2015;13:88 Epub 2015/04/19. 10.1186/s12967-015-0447-7 PubMed DOI PMC
Huang Y, Hickey RP, Yeh JL, Liu D, Dadak A, Young LH, et al. Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2004;18(10):1138–40. Epub 2004/05/11. 10.1096/fj.04-1510fje . PubMed DOI
Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485–90. Epub 1998/08/11. 10.1038/28867 . PubMed DOI
Dahlmann J, Kensah G, Kempf H, Skvorc D, Gawol A, Elliott DA, et al. The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials. 2013;34(10):2463–71. Epub 2013/01/22. 10.1016/j.biomaterials.2012.12.024 . PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. Epub 2002/02/16. 10.1006/meth.2001.1262 . PubMed DOI
Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22(14):1991–2002. Epub 2013/03/07. 10.1089/scd.2012.0490 PubMed DOI PMC
Radaszkiewicz KA, Sykorova D, Karas P, Kudova J, Kohut L, Bino L, et al. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro. The Review of scientific instruments. 2016;87(2):024301 Epub 2016/03/05. 10.1063/1.4941776 . PubMed DOI
Sepulveda JL, Belaguli N, Nigam V, Chen CY, Nemer M, Schwartz RJ. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol. 1998;18(6):3405–15. Epub 1998/06/20. PubMed PMC
Lyons GE, Schiaffino S, Sassoon D, Barton P, Buckingham M. Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol. 1990;111(6 Pt 1):2427–36. Epub 1990/12/01. PubMed PMC
Sjoblom B, Salmazo A, Djinovic-Carugo K. Alpha-actinin structure and regulation. Cell Mol Life Sci. 2008;65(17):2688–701. Epub 2008/05/20. 10.1007/s00018-008-8080-8 . PubMed DOI PMC
Kubalak SW, Miller-Hance WC, O'Brien TX, Dyson E, Chien KR. Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J Biol Chem. 1994;269(24):16961–70. Epub 1994/06/17. . PubMed
Pesl M, Acimovic I, Pribyl J, Hezova R, Vilotic A, Fauconnier J, et al. Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart and vessels. 2014;29(6):834–46. Epub 2013/11/22. 10.1007/s00380-013-0436-9 . PubMed DOI
Wartenberg M, Donmez F, Ling FC, Acker H, Hescheler J, Sauer H. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2001;15(6):995–1005. Epub 2001/04/09. . PubMed
Qi Y, Tian X, Liu J, Han Y, Graham AM, Simon MC, et al. Bnip3 and AIF cooperate to induce apoptosis and cavitation during epithelial morphogenesis. J Cell Biol. 2012;198(1):103–14. Epub 2012/07/04. 10.1083/jcb.201111063 PubMed DOI PMC
Ateghang B, Wartenberg M, Gassmann M, Sauer H. Regulation of cardiotrophin-1 expression in mouse embryonic stem cells by HIF-1alpha and intracellular reactive oxygen species. Journal of cell science. 2006;119(Pt 6):1043–52. Epub 2006/03/02. 10.1242/jcs.02798 . PubMed DOI
Bianco C, Cotten C, Lonardo E, Strizzi L, Baraty C, Mancino M, et al. Cripto-1 is required for hypoxia to induce cardiac differentiation of mouse embryonic stem cells. Am J Pathol. 2009;175(5):2146–58. Epub 2009/10/17. 10.2353/ajpath.2009.090218 PubMed DOI PMC
Fukushima A, Milner K, Gupta A, Lopaschuk GD. Myocardial Energy Substrate Metabolism in Heart Failure: from Pathways to Therapeutic Targets. Curr Pharm Des. 2015;21(25):3654–64. Epub 2015/07/15. . PubMed
Choi WY, Poss KD. Cardiac regeneration. Curr Top Dev Biol. 2012;100:319–44. Epub 2012/03/28. 10.1016/B978-0-12-387786-4.00010-5 PubMed DOI PMC
Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. 2007;12(3–4):331–43. Epub 2007/05/23. 10.1007/s10741-007-9034-1 . PubMed DOI
Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci U S A. 1997;94(17):9493–8. Epub 1997/08/19. PubMed PMC
Maltsev VA, Rohwedel J, Hescheler J, Wobus AM. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev. 1993;44(1):41–50. Epub 1993/11/01. . PubMed
Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol. 2007;293(3):H1883–91. Epub 2007/07/03. 10.1152/ajpheart.00514.2007 . PubMed DOI
Van Vliet P, Wu SM, Zaffran S, Puceat M. Early cardiac development: a view from stem cells to embryos. Cardiovascular research. 2012;96(3):352–62. Epub 2012/08/16. 10.1093/cvr/cvs270 PubMed DOI PMC
Madabhushi M, Lacy E. Anterior visceral endoderm directs ventral morphogenesis and placement of head and heart via BMP2 expression. Developmental cell. 2011;21(5):907–19. Epub 2011/11/15. 10.1016/j.devcel.2011.08.027 PubMed DOI PMC
Liang S, Li HC, Wang YX, Wu SS, Cai YJ, Cui HL, et al. Pulmonary endoderm, second heart field and the morphogenesis of distal outflow tract in mouse embryonic heart. Development, growth & differentiation. 2014;56(4):276–92. Epub 2014/04/05. 10.1111/dgd.12129 . PubMed DOI
Youngblood BA, MacDonald CC. CstF-64 is necessary for endoderm differentiation resulting in cardiomyocyte defects. Stem cell research. 2014;13(3 Pt A):413–21. Epub 2014/12/03. 10.1016/j.scr.2014.09.005 PubMed DOI PMC
Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo MM, Kemler R. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Developmental cell. 2002;3(2):171–81. Epub 2002/08/27. . PubMed
Chen K, Bai H, Arzigian M, Gao YX, Bao J, Wu WS, et al. Endothelial cells regulate cardiomyocyte development from embryonic stem cells. Journal of cellular biochemistry. 2010;111(1):29–39. Epub 2010/05/28. 10.1002/jcb.22680 PubMed DOI PMC
Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation
Deacetylation of Histone H4 Accompanying Cardiomyogenesis is Weakened in HDAC1-Depleted ES Cells
Neural Differentiation Is Inhibited through HIF1α/β-Catenin Signaling in Embryoid Bodies