Neural Differentiation Is Inhibited through HIF1α/β-Catenin Signaling in Embryoid Bodies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29422917
PubMed Central
PMC5750467
DOI
10.1155/2017/8715798
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Extensive research in the field of stem cells and developmental biology has revealed evidence of the role of hypoxia as an important factor regulating self-renewal and differentiation. However, comprehensive information about the exact hypoxia-mediated regulatory mechanism of stem cell fate during early embryonic development is still missing. Using a model of embryoid bodies (EBs) derived from murine embryonic stem cells (ESC), we here tried to encrypt the role of hypoxia-inducible factor 1α (HIF1α) in neural fate during spontaneous differentiation. EBs derived from ESC with the ablated gene for HIF1α had abnormally increased neuronal characteristics during differentiation. An increased neural phenotype in Hif1α-/- EBs was accompanied by the disruption of β-catenin signaling together with the increased cytoplasmic degradation of β-catenin. The knock-in of Hif1α, as well as β-catenin ectopic overexpression in Hif1α-/- EBs, induced a reduction in neural markers to the levels observed in wild-type EBs. Interestingly, direct interaction between HIF1α and β-catenin was demonstrated by immunoprecipitation analysis of the nuclear fraction of wild-type EBs. Together, these results emphasize the regulatory role of HIF1α in β-catenin stabilization during spontaneous differentiation, which seems to be a crucial mechanism for the natural inhibition of premature neural differentiation.
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Institute of Biophysics Academy of Sciences of the Czech Republic 61265 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Zobrazit více v PubMed
Okazaki K., Maltepe E. Oxygen, epigenetics and stem cell fate. Regenerative Medicine. 2006;1:71–83. doi: 10.2217/17460751.1.1.71. PubMed DOI
Quinn P., Harlow G. M. The effect of oxygen on the development of preimplantation mouse embryos in vitro. Journal of Experimental Zoology. 1978;206:73–80. doi: 10.1002/jez.1402060108. PubMed DOI
Pabon J. E., Jr., Findley W. E., Gibbons W. E. The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertility and Sterility. 1989;51:896–900. doi: 10.1016/S0015-0282(16)60688-X. PubMed DOI
Ying Q.-L., Wray J., Nichols J., et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–523. doi: 10.1038/nature06968. PubMed DOI PMC
Ramírez-Bergeron D. L., Runge A., Dahl K. D. C., Fehling H. J., Keller G., Simon M. C. Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development. 2004;131:4623–4634. doi: 10.1242/dev.01310. PubMed DOI
Lee S.-W., Jeong H.-K., Lee J.-Y., et al. Hypoxic priming of mESCs accelerates vascular-lineage differentiation through HIF1-mediated inverse regulation of Oct4 and VEGF. EMBO Molecular Medicine. 2012;4:924–938. doi: 10.1002/emmm.201101107. PubMed DOI PMC
Yamaguchi T. Heads or tails: Wnts and anterior–posterior patterning. Current Biology. 2001;11:713–724. doi: 10.1016/s0960-9822(01)00417-1. PubMed DOI
Aubert J., Dunstan H., Chambers I., Smith A. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nature Biotechnology. 2002;20:1240–1245. doi: 10.1038/nbt763. PubMed DOI
Naito A. T., Shiojima I., Akazawa H., et al. Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. PNAS. 2006;103:19812–19817. doi: 10.1073/pnas.0605768103. PubMed DOI PMC
ten Berge D., Koole W., Fuerer C., Fish M., Eroglu E., Nusse R. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell. 2008;3:508–518. doi: 10.1016/j.stem.2008.09.013. PubMed DOI PMC
Majmundar A. J., Wong W. J., Simon M. C. Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell. 2010;40:294–309. doi: 10.1016/j.molcel.2010.09.022. PubMed DOI PMC
Singh R. P., Franke K., Wielockx B. Hypoxia-mediated regulation of stem cell fate. High Altitude Medicine & Biology. 2012;13:162–168. doi: 10.1089/ham.2012.1043. PubMed DOI
Kudová J., Procházková J., Vašiček O., et al. HIF-1alpha deficiency attenuates the cardiomyogenesis of mouse embryonic stem cells. PLoS One. 2016;11:1–17. doi: 10.1371/journal.pone.0158358. PubMed DOI PMC
Gustafsson M. V., Zheng X., Pereira T., et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Developmental Cell. 2005;9:617–628. doi: 10.1016/j.devcel.2005.09.010. PubMed DOI
Mazumdar J., O’Brien W. T., Johnson R. S., et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nature Cell Biology. 2010;12:1007–1013. doi: 10.1038/ncb2102. PubMed DOI PMC
Murry C. E., Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–680. doi: 10.1016/j.cell.2008.02.008. PubMed DOI
Kotasová H., Procházková J., Pacherník J. Interaction of Notch and gp130 signaling in the maintenance of neural stem and progenitor cells. Cellular and Molecular Neurobiology. 2014;34:1–15. doi: 10.1007/s10571-013-9996-6. PubMed DOI PMC
Roitbak T., Li L., Cunningham L. A. Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1α-regulated VEGF signaling. Journal of Cerebral Blood Flow and Metabolism. 2008;28:1530–1542. doi: 10.1038/jcbfm.2008.38. PubMed DOI PMC
Tomita S., Ueno M., Sakamoto M., et al. Defective brain development in mice lacking the Hif-1α gene in neural. Cell. 2003;23:6739–6749. doi: 10.1128/MCB.23.19.6739-6749.2003. PubMed DOI PMC
Veeman M. T., Slusarski D. C., Kaykas A., Louie S. H., Moon R. T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Current Biology. 2003;13:680–685. doi: 10.1016/S0960-9822(03)00240-9. PubMed DOI
Salic A., Lee E., Mayer L., Kirschner M. W. Control of β-catenin stability: reconstitution of the cytoplasmic steps of the Wnt pathway in Xenopus egg extracts. Molecular Cell. 2000;5:523–532. doi: 10.1016/S1097-2765(00)80446-3. PubMed DOI
Kaidi A., Williams A. C., Paraskeva C. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nature Cell Biology. 2007;9:210–217. doi: 10.1038/ncb1534. PubMed DOI
Zhang Q., Bai X., Chen W., et al. Wnt/β-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling. Carcinogenesis. 2013;34:962–973. doi: 10.1093/carcin/bgt027. PubMed DOI
Majmundar A. J., Lee D. S. M., Skuli N., et al. HIF modulation of Wnt signaling regulates skeletal myogenesis in vivo. Development. 2015;142:2405–2412. doi: 10.1242/dev.123026. PubMed DOI PMC
Medley T. L., Furtado M., Lam N. T., et al. Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/beta-catenin signaling. PLoS One. 2013;8:1–8. doi: 10.1371/journal.pone.0080280. PubMed DOI PMC
Čajánek L., Ribeiro D., Liste I., Parish C. L., Bryja V., Arenas E. Wnt/β-catenin signaling blockade promotes neuronal induction and dopaminergic differentiation in embryonic stem cells. Stem Cells. 2009;27:2917–2927. doi: 10.1002/stem.210. PubMed DOI
Woodhead G. J., Mutch C. A., Olson E. C., Chenn A. Cell-autonomous β-catenin signaling regulates cortical precursor proliferation. Journal of Neuroscience. 2006;26:12620–12630. doi: 10.1523/JNEUROSCI.3180-06.2006. PubMed DOI PMC
Rudloff S., Kemler R. Differential requirements for β-catenin during mouse development. Development. 2012;139:3711–3721. doi: 10.1242/dev.085597. PubMed DOI
Sato Y., Inoue M., Yoshizawa T., Yamagata K. Moderate hypoxia induces β-cell dysfunction with HIF-1-independent gene expression changes. PLoS One. 2014;9:1–20. doi: 10.1371/journal.pone.0114868. PubMed DOI PMC
Sansom S. N., Griffiths D. S., Faedo A., et al. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genetics. 2009;5, article e1000511 doi: 10.1371/journal.pgen.1000511. PubMed DOI PMC
Machon O., Backman M., Machonova O., et al. A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Developmental Biology. 2007;311:223–237. doi: 10.1016/j.ydbio.2007.08.038. PubMed DOI
Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation
Modulation of Differentiation of Embryonic Stem Cells by Polypyrrole: The Impact on Neurogenesis