Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-01057S
Czech Science Foundation
18-18235S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_026/0008451
European Regional Development Fund
PubMed
35163031
PubMed Central
PMC8835127
DOI
10.3390/ijms23031107
PII: ijms23031107
Knihovny.cz E-zdroje
- Klíčová slova
- PEDOT:PSS, conductive polymer, electrostimulation, embryonic stem cells, screen print,
- MeSH
- bicyklické sloučeniny heterocyklické chemie MeSH
- buněčná diferenciace * MeSH
- buněčné kultury MeSH
- elektrická vodivost * MeSH
- elektrody MeSH
- myší embryonální kmenové buňky cytologie účinky léků MeSH
- myši MeSH
- polymery chemie farmakologie MeSH
- polystyreny chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bicyklické sloučeniny heterocyklické MeSH
- poly(3,4-ethylene dioxythiophene) MeSH Prohlížeč
- polymery MeSH
- polystyrene sulfonic acid MeSH Prohlížeč
- polystyreny MeSH
Organic semiconductors are constantly gaining interest in regenerative medicine. Their tunable physico-chemical properties, including electrical conductivity, are very promising for the control of stem-cell differentiation. However, their use for combined material-based and electrical stimulation remains largely underexplored. Therefore, we carried out a study on whether a platform based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be beneficial to the differentiation of mouse embryonic stem cells (mESCs). The platform was prepared using the layout of a standard 24-well cell-culture plate. Polyethylene naphthalate foil served as the substrate for the preparation of interdigitated gold electrodes by physical vapor deposition. The PEDOT:PSS pattern was fabricated by precise screen printing over the gold electrodes. The PEDOT:PSS platform was able to produce higher electrical current with the pulsed-direct-current (DC) electrostimulation mode (1 Hz, 200 mV/mm, 100 ms pulse duration) compared to plain gold electrodes. There was a dominant capacitive component. In proof-of-concept experiments, mESCs were able to respond to such electrostimulation by membrane depolarization and elevation of cytosolic calcium. Further, the PEDOT:PSS platform was able to upregulate cardiomyogenesis and potentially inhibit early neurogenesis per se with minor contribution of electrostimulation. Hence, the present work highlights the large potential of PEDOT:PSS in regenerative medicine.
Zobrazit více v PubMed
Sachinidis A., Fleischmann B.K., Kolossov E., Wartenberg M., Sauer H., Hescheler J. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc. Res. 2003;58:278–291. doi: 10.1016/S0008-6363(03)00248-7. PubMed DOI
Keller G. Embryonic stem cell differentiation: Emergence of a new era in biology and medicine. Genes Dev. 2005;19:1129–1155. doi: 10.1101/gad.1303605. PubMed DOI
Heng B.C., Cao T., Stanton L.W., Robson P., Olsen B. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J. Bone Miner. Res. 2004;19:1379–1394. doi: 10.1359/JBMR.040714. PubMed DOI
Amin M., Kushida Y., Wakao S., Kitada M., Tatsumi K., Dezawa M. Cardiotrophic growth factor-driven induction of human muse cells into cardiomyocyte-like phenotype. Cell Transplant. 2018;27:285–298. doi: 10.1177/0963689717721514. PubMed DOI PMC
Tian H.-C., Liu J.-Q., Kang X.-Y., Wei D.-X., Zhang C., Du J.-C., Yang B., Chen X., Yang C.-S. Biotic and abiotic molecule dopants determining the electrochemical performance, stability and fibroblast behavior of conducting polymer for tissue interface. RSC Adv. 2014;4:47461–47471. doi: 10.1039/C4RA07265K. DOI
Chen C., Bai X., Ding Y., Lee I.-S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater. Res. 2019;23:25. doi: 10.1186/s40824-019-0176-8. PubMed DOI PMC
Broughton K.M., Wang B.J., Firouzi F., Khalafalla F., Dimmeler S., Fernandez-Aviles F., Sussman M.A. Mechanisms of cardiac repair and regeneration. Circ. Res. 2018;122:1151–1163. doi: 10.1161/CIRCRESAHA.117.312586. PubMed DOI PMC
Du Pré B.C., Doevendans P.A., van Laake L.W. Stem cells for cardiac repair: An introduction. J. Geriatr. Cardiol. JGC. 2013;10:186. PubMed PMC
Parsa H., Ronaldson K., Vunjak-Novakovic G. Bioengineering methods for myocardial regeneration. Adv. Drug Deliv. Rev. 2016;96:195–202. doi: 10.1016/j.addr.2015.06.012. PubMed DOI PMC
Thrivikraman G., Boda S.K., Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials. 2018;150:60–86. doi: 10.1016/j.biomaterials.2017.10.003. PubMed DOI
Ma R., Liang J., Huang W., Guo L., Cai W., Wang L., Paul C., Yang H.-T., Kim H.W., Wang Y. Electrical Stimulation Enhances Cardiac Differentiation of Human Induced Pluripotent Stem Cells for Myocardial Infarction Therapy. Antioxid. Redox Signal. 2018;28:371–384. doi: 10.1089/ars.2016.6766. PubMed DOI PMC
Radisic M., Park H., Shing H., Consi T., Schoen F.J., Langer R., Freed L.E., Vunjak-Novakovic G. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA. 2004;101:18129–18134. doi: 10.1073/pnas.0407817101. PubMed DOI PMC
Cao H., Kang B.J., Lee C.-A., Shung K.K., Hsiai T.K. Electrical and mechanical strategies to enable cardiac repair and regeneration. IEEE Rev. Biomed. Eng. 2015;8:114–124. doi: 10.1109/RBME.2015.2431681. PubMed DOI PMC
Gueye M.N., Carella A., Faure-Vincent J., Demadrille R., Simonato J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020;108:100616. doi: 10.1016/j.pmatsci.2019.100616. DOI
Rivnay J., Owens R.M., Malliaras G.G. The rise of organic bioelectronics. Chem. Mater. 2013;26:679–685. doi: 10.1021/cm4022003. DOI
Stritesky S., Markova A., Vitecek J., Safarikova E., Hrabal M., Kubac L., Kubala L., Weiter M., Vala M. Printing inks of electroactive polymer PEDOT:PSS: The study of biocompatibility, stability, and electrical properties. J. Biomed. Mater. Res. Part A. 2018;106:1121–1128. doi: 10.1002/jbm.a.36314. PubMed DOI
Dijk G., Rutz A.L., Malliaras G.G. Stability of PEDOT:PSS-Coated Gold Electrodes in Cell Culture Conditions. Adv. Mater. Technol. 2020;5:1900662. doi: 10.1002/admt.201900662. DOI
Moyen E., Hama A., Ismailova E., Assaud L., Malliaras G., Hanbücken M., Owens R.M. Nanostructured conducting polymers for stiffness controlled cell adhesion. Nanotechnology. 2016;27:074001. doi: 10.1088/0957-4484/27/7/074001. PubMed DOI
Ritzau-Reid K.I., Spicer C.D., Gelmi A., Grigsby C.L., Ponder J.F., Jr., Bemmer V., Creamer A., Vilar R., Serio A., Stevens M.M. An electroactive oligo-EDOT platform for neural tissue engineering. Adv. Funct. Mater. 2020;30:2003710. doi: 10.1002/adfm.202003710. PubMed DOI PMC
Heo D.N., Acquah N., Kim J., Lee S.-J., Castro N.J., Zhang L.G. Directly induced neural differentiation of human adipose-derived stem cells using three-dimensional culture system of conductive microwell with electrical stimulation. Tissue Eng. Part A. 2018;24:537–545. doi: 10.1089/ten.tea.2017.0150. PubMed DOI
Aggas J.R., Abasi S., Phipps J.F., Podstawczyk D.A., Guiseppi-Elie A. Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics. Biosens. Bioelectron. 2020;168:112568. doi: 10.1016/j.bios.2020.112568. PubMed DOI
Iandolo D., Sheard J., Levy G.K., Pitsalidis C., Tan E., Dennis A., Kim J.-S., Markaki A.E., Widera D., Owens R.M. Biomimetic and electroactive 3D scaffolds for human neural crest-derived stem cell expansion and osteogenic differentiation. MRS Commun. 2020;10:179–187. doi: 10.1557/mrc.2020.10. DOI
Tomaskovic-Crook E., Zhang P., Ahtiainen A., Kaisvuo H., Lee C.-Y., Beirne S., Aqrawe Z., Svirskis D., Hyttinen J., Wallace G.G., et al. Human neural tissues from neural stem cells using conductive biogel and printed polymer microelectrode arrays for 3D electrical stimulation. Adv. Healthc. Mater. 2019;8:1900425. doi: 10.1002/adhm.201900425. PubMed DOI
Tsai N.-C., She J.-W., Wu J.-G., Chen P., Hsiao Y.-S., Yu J. Poly (3,4-ethylenedioxythiophene) polymer composite bioelectrodes with designed chemical and topographical cues to manipulate the behavior of pc12 neuronal cells. Adv. Mater. Interfaces. 2019;6:1801576. doi: 10.1002/admi.201801576. DOI
Pires F., Ferreira Q., Rodrigues C.A., Morgado J., Ferreira F.C. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim. Biophys. Acta Gen. Subj. 2015;1850:1158–1168. doi: 10.1016/j.bbagen.2015.01.020. PubMed DOI
Decataldo F., Druet V., Pappa A.-M., Tan E., Savva A., Pitsalidis C., Inal S., Kim J.-S., Fraboni B., Owens R.M., et al. BMP-2 functionalized PEDOT:PSS-based OECTs for stem cell osteogenic differentiation monitoring. Flex. Print. 2019;4:044006. doi: 10.1088/2058-8585/ab5bfc. DOI
Roshanbinfar K., Vogt L., Greber B., Diecke S., Boccaccini A.R., Scheibel T., Engel F.B. Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues. Adv. Funct. Mater. 2018;28:1803951. doi: 10.1002/adfm.201803951. DOI
Yoshida S., Sumomozawa K., Nagamine K., Nishizawa M. Hydrogel Microchambers Integrated with Organic Electrodes for Efficient Electrical Stimulation of Human iPSC-Derived Cardiomyocytes. Macromol. Biosci. 2019;19:1900060. doi: 10.1002/mabi.201900060. PubMed DOI
Menzies K.L., Jones L. The impact of contact angle on the biocompatibility of biomaterials. Optom. Vis. Sci. 2010;87:387–399. doi: 10.1097/OPX.0b013e3181da863e. PubMed DOI
Safarikova E., Sindlerova L.S., Stritesky S., Kubala L., Vala M., Weiter M., Vitecek J. Evaluation and improvement of organic semiconductors’ biocompatibility towards fibroblasts and cardiomyocytes. Sens. Actuators B Chem. 2018;260:418–425. doi: 10.1016/j.snb.2017.12.108. DOI
Radaszkiewicz K.A., Sykorova D., Bino L., Kudova J., Bebarova M., Prochazkova J., Kotasova H., Kubala L., Pachernik J. The acceleration of cardiomyogenesis in embryonic stem cells in vitro by serum depletion does not increase the number of developed cardiomyocytes. PLoS ONE. 2017;12:e0173140. doi: 10.1371/journal.pone.0173140. PubMed DOI PMC
Lanza R., Gearhart J., Hogan B., Melton D., Pedersen R., Thomas E.D., Thomson J.A., West M. Essentials of Stem Cell Biology. Elsevier; Amsterdam, The Netherlands: 2005.
Hernandez D., Millard R., Sivakumaran P., Wong R.C., Crombie D.E., Hewitt A.W., Liang H., Hung S.S., Pebay A., Shepherd R.K., et al. Electrical stimulation promotes cardiac differentiation of human induced pluripotent stem cells. Stem Cells Int. 2015;2016:1718041. doi: 10.1155/2016/1718041. PubMed DOI PMC
Sauer H., Bekhite M.M., Hescheler J., Wartenberg M. Redox control of angiogenic factors and CD31-positive vessel-like structures in mouse embryonic stem cells after direct current electrical field stimulation. Exp. Cell Res. 2005;304:380–390. doi: 10.1016/j.yexcr.2004.11.026. PubMed DOI
Yamada M., Tanemura K., Okada S., Iwanami A., Nakamura M., Mizuno H., Ozawa M., Ohyama-Goto R., Kitamura N., Kawano M., et al. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells. 2007;25:562–570. doi: 10.1634/stemcells.2006-0011. PubMed DOI
Serena E., Figallo E., Tandon N., Cannizzaro C., Gerecht S., Elvassore N., Vunjak-Novakovic G. Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Exp. Cell Res. 2009;315:3611–3619. doi: 10.1016/j.yexcr.2009.08.015. PubMed DOI PMC
Tandon N., Marsano A., Maidhof R., Numata K., Montouri-Sorrentino C., Cannizzaro C., Voldman J., Vunjak-Novakovic G. Surface-patterned electrode bioreactor for electrical stimulation. Lab Chip. 2010;10:692–700. doi: 10.1039/b917743d. PubMed DOI PMC
Chan Y.-C., Ting S., Lee Y.-K., Ng K.-M., Zhang J., Chen Z., Siu C.-W., Oh S.K.W., Tse H.-F. Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells. J. Cardiovasc. Transl. Res. 2013;6:989–999. doi: 10.1007/s12265-013-9510-z. PubMed DOI
Nuccitelli R. Endogenous ionic currents and DC electric fields in multicellular animal tissues. Bioelectromagnetics. 1992;13:147–157. doi: 10.1002/bem.2250130714. PubMed DOI
Proctor C.M., Rivnay J., Malliaras G.G. Understanding volumetric capacitance in conducting polymers. J. Polym. Sci. B Polym. Phys. 2016;54:1433–1436. doi: 10.1002/polb.24038. DOI
Winther-Jensen B., Winther-Jensen O., Forsyth M., MacFarlane D.R. High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science. 2008;321:671–674. doi: 10.1126/science.1159267. PubMed DOI
Cottis P.P., Evans D., Fabretto M., Pering S., Murphy P., Hojati-Talemi P. Metal-free oxygen reduction electrodes based on thin PEDOT films with high electrocatalytic activity. RSC Adv. 2014;4:9819–9824. doi: 10.1039/c3ra46167j. DOI
Kudova J., Prochazkova J., Vasicek O., Perecko T., Sedlackova M., Pesl M., Pachernik J., Kubala L. HIF-1alpha deficiency attenuates the cardiomyogenesis of mouse embryonic stem cells. PLoS ONE. 2016;11:e0158358. doi: 10.1371/journal.pone.0158358. PubMed DOI PMC
Vecera J., Kudova J., Kucera J., Kubala L., Pachernik J. Neural Differentiation Is Inhibited through HIF1α/β-Catenin Signaling in Embryoid Bodies. Stem Cells Int. 2017;2017:8715798. doi: 10.1155/2017/8715798. PubMed DOI PMC
Humpolicek P., Radaszkiewicz K.A., Kasparkova V., Stejskal J., Trchova M., Kucekova Z., Vicarova H., Pachernik J., Lehocky M., Minarik A. Stem cell differentiation on conducting polyaniline. RSC Adv. 2015;5:68796–68805. doi: 10.1039/C5RA12218J. DOI
Radaszkiewicz K.A., Beckerova D., Woloszczukova L., Radaszkiewicz T.W., Lesakova P., Blanarova O.V., Kubala L., Humpolicek P., Pachernik J. 12-O-Tetradecanoylphorbol-13-acetate increases cardiomyogenesis through PKC/ERK signaling. Sci. Rep. 2020;10:15922. doi: 10.1038/s41598-020-73074-4. PubMed DOI PMC
Tandon N., Cannizzaro C., Chao P.-H.G., Maidhof R., Marsano A., Au H.T.H., Radisic M., Vunjak-Novakovic G. Electrical stimulation systems for cardiac tissue engineering. Nat. Protoc. 2009;4:155–173. doi: 10.1038/nprot.2008.183. PubMed DOI PMC
Sauer H., Rahimi G., Hescheler J., Wartenberg M. Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J. Cell. Biochem. 1999;75:710–723. doi: 10.1002/(SICI)1097-4644(19991215)75:4<710::AID-JCB16>3.0.CO;2-Z. PubMed DOI
Coelho N.M., González-Garcia C., Planell J., Salmerón-Sánchez M., Altankov G. Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur. Cell. Mater. 2010;19:262–272. doi: 10.22203/eCM.v019a25. PubMed DOI
Nagy A., Rossant J., Nagy R., Abramow-Newerly W., Roder J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 1993;90:8424–8428. doi: 10.1073/pnas.90.18.8424. PubMed DOI PMC
Dahlmann J., Kensah G., Kempf H., Skvorc D., Gawol A., Elliott D.A., Dräger G., Zweigerdt R., Martin U., Gruh I. The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials. 2013;34:2463–2471. doi: 10.1016/j.biomaterials.2012.12.024. PubMed DOI
Schneider C.A., Rasband W.S., Eliceiri K.W., Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., et al. NIH image to imageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Adams D.S., Levin M. Measuring resting membrane potential using the fluorescent voltage reporters DiBAC4 (3) and CC2-DMPE. Cold Spring Harb. Protoc. 2012;2012:pdb-prot067702. doi: 10.1101/pdb.prot067702. PubMed DOI PMC
Lan J.-Y., Williams C., Levin M., Black L.D. Depolarization of cellular resting membrane potential promotes neonatal cardiomyocyte proliferation in vitro. Cell. Mol. Bioeng. 2014;7:432–445. doi: 10.1007/s12195-014-0346-7. PubMed DOI PMC