Oxygen Is an Ambivalent Factor for the Differentiation of Human Pluripotent Stem Cells in Cardiac 2D Monolayer and 3D Cardiac Spheroids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
project 16073
French Muscular Dystrophy Association
20225
AFM-Téléthon
PubMed
33440843
PubMed Central
PMC7827232
DOI
10.3390/ijms22020662
PII: ijms22020662
Knihovny.cz E-zdroje
- Klíčová slova
- 2D-monolayer, cardiac spheroids, contractile properties, embryoid bodies, hPSC-derived cardiomyocytes, intracellular calcium handling, mitochondrial oxygen consumption, oxygen exposure,
- MeSH
- biologické markery MeSH
- buněčná diferenciace * MeSH
- buněčné kultury MeSH
- buněčné sféroidy MeSH
- exprese genu MeSH
- kardiomyocyty cytologie metabolismus MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- pluripotentní kmenové buňky cytologie metabolismus MeSH
- sarkoplazmatické retikulum metabolismus MeSH
- srdeční mitochondrie metabolismus MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- kyslík MeSH
- vápník MeSH
Numerous protocols of cardiac differentiation have been established by essentially focusing on specific growth factors on human pluripotent stem cell (hPSC) differentiation efficiency. However, the optimal environmental factors to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Here, we hypothesized that low oxygen exposure enhances the molecular and functional maturity of the cardiomyocytes. We aimed at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hPSCs in 2D- and 3D-based protocols. hPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed. The mitochondrial localization and metabolic properties were evaluated. The intracellular Ca2+ handling and contractile properties were also monitored. The 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac spheroids containing hPSC-CMs in LOE further exhibited cardiac markers, hypertrophy, steadier SR Ca2+ release properties revealing a better SR Ca2+ handling, and enhanced contractile force. Preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Our results brought evidences that LOE is moderately beneficial for the 3D cardiac spheroids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE.
CEITEC Masaryk University 62500 Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 65691 Brno Czech Republic
PhyMedExp INSERM University of Montpellier CNRS 34000 Montpellier France
Zobrazit více v PubMed
Acimovic I., Vilotic A., Pesl M., Lacampagne A., Dvorak P., Rotrekl V., Meli A.C. Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools. BioMed Res. Int. 2014 doi: 10.1155/2014/512831. PubMed DOI PMC
Simon M.C., Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol. 2008;9:285–296. doi: 10.1038/nrm2354. PubMed DOI PMC
Horton R.E., Auguste D.T. Synergistic effects of hypoxia and extracellular matrix cues in cardiomyogenesis. Biomaterials. 2012;33:6313–6319. doi: 10.1016/j.biomaterials.2012.05.063. PubMed DOI
Leri A., Rota M., Hosoda T., Goichberg P., Anversa P. Cardiac stem cell niches. Stem Cell Res. 2014;13:631–646. doi: 10.1016/j.scr.2014.09.001. PubMed DOI PMC
Korski K.I., Kubli D.A., Wang B.J., Khalafalla F.G., Monsanto M.M., Firouzi F., Echeagaray O.H., Kim T., Adamson R.M., Dembitsky W.P., et al. Hypoxia prevents mitochondrial dysfunction and senescence in human c-kit+ cardiac progenitor cells. Stem Cells. 2019;37:555–567. doi: 10.1002/stem.2970. PubMed DOI PMC
Mummery Christine L., Zhang J., Elizabeth S.N., David A.E., Andrew G.E., Timothy J.K. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes. Circ. Res. 2012;111:344–358. doi: 10.1161/CIRCRESAHA.110.227512. PubMed DOI PMC
Niebruegge S., Bauwens C.L., Peerani R., Thavandiran N., Masse S., Sevaptisidis E., Nanthakumar K., Woodhouse K., Husain M., Kumacheva E., et al. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol. Bioeng. 2009;102:493–507. doi: 10.1002/bit.22065. PubMed DOI
Kudova J., Prochazkova J., Vasicek O., Perecko T., Sedlackova M., Pesl M., Pachernik J., Kubala L. Hif-1alpha deficiency attenuates the cardiomyogenesis of mouse embryonic stem cells. PLoS ONE. 2016;11:e0158358. doi: 10.1371/journal.pone.0158358. PubMed DOI PMC
Krishnan J., Ahuja P., Bodenmann S., Knapik D., Perriard E., Krek W., Perriard J.-C. Essential role of developmentally activated hypoxia-inducible factor 1alpha for cardiac morphogenesis and function. Circ. Res. 2008;103:1139–1146. doi: 10.1161/01.RES.0000338613.89841.c1. PubMed DOI
Iyer N.V., Kotch L.E., Agani F., Leung S.W., Laughner E., Wenger R.H., Gassmann M., Gearhart J.D., Lawler A.M., Yu A.Y., et al. Cellular and developmental control of o2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12:149–162. doi: 10.1101/gad.12.2.149. PubMed DOI PMC
Medley T.L., Furtado M., Lam N.T., Idrizi R., Williams D., Verma P.J., Costa M., Kaye D.M. Effect of oxygen on cardiac differentiation in mouse ips cells: Role of hypoxia inducible factor-1 and wnt/beta-catenin signaling. PLoS ONE. 2013;8:e80280. doi: 10.1371/journal.pone.0080280. PubMed DOI PMC
Acimovic I., Refaat M.M., Moreau A., Salykin A., Reiken S., Sleiman Y., Souidi M., Pribyl J., Kajava A.V., Richard S., et al. Post-translational modifications and diastolic calcium leak associated to the novel ryr2-d3638a mutation lead to cpvt in patient-specific hipsc-derived cardiomyocytes. J. Clin. Med. 2018;7:423. doi: 10.3390/jcm7110423. PubMed DOI PMC
Pesl M., Acimovic I., Pribyl J., Hezova R., Vilotic A., Fauconnier J., Vrbsky J., Kruzliak P., Skladal P., Kara T., et al. Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart Vessel. 2014;29:834–846. doi: 10.1007/s00380-013-0436-9. PubMed DOI
Dubois N.C., Craft A.M., Sharma P., Elliott D.A., Stanley E.G., Elefanty A.G., Gramolini A., Keller G. Sirpa is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 2011;29:1011–1018. doi: 10.1038/nbt.2005. PubMed DOI PMC
Kattman S.J., Witty A.D., Gagliardi M., Dubois N.C., Niapour M., Hotta A., Ellis J., Keller G. Stage-specific optimization of activin/nodal and bmp signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem. Cell. 2011;8:228–240. doi: 10.1016/j.stem.2010.12.008. PubMed DOI
Burridge P.W., Thompson S., Millrod M.A., Weinberg S., Yuan X., Peters A., Mahairaki V., Koliatsos V.E., Tung L., Zambidis E.T. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS ONE. 2011;6:e18293. doi: 10.1371/journal.pone.0018293. PubMed DOI PMC
Palmer J.W., Tandler B., Hoppel C.L. Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: Effects of procedural manipulations. Arch. Biochem. Biophys. 1985;236:691–702. doi: 10.1016/0003-9861(85)90675-7. PubMed DOI
Chen Y., Amende I., Hampton T.G., Yang Y., Ke Q., Min J.-Y., Xiao Y.-F., Morgan J.P. Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H1653–H1658. doi: 10.1152/ajpheart.00363.2005. PubMed DOI
Millauer B., Wizigmann-Voos S., Schnurch H., Martinez R., Moller N.P., Risau W., Ullrich A. High affinity vegf binding and developmental expression suggest flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993;72:835–846. doi: 10.1016/0092-8674(93)90573-9. PubMed DOI
Louzier V., Raffestin B., Leroux A., Branellec D., Caillaud J.M., Levame M., Eddahibi S., Adnot S. Role of vegf-b in the lung during development of chronic hypoxic pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003;284:L926–L937. doi: 10.1152/ajplung.00247.2002. PubMed DOI
Bellomo D., John P.H., Ginters U.S., Carol A.P., Penny S.T., Gartside M., Mould A., Marian M.C., Ian D.T., Sean M.G., et al. Mice lacking the vascular endothelial growth factor-b gene (vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 2000;86:e29–e35. doi: 10.1161/01.RES.86.2.e29. PubMed DOI
Cameron C.M., Harding F., Hu W.-S., Kaufman D.S. Activation of hypoxic response in human embryonic stem cell–derived embryoid bodies. Exp. Biol. Med. 2008;233:1044–1057. doi: 10.3181/0709-RM-263. PubMed DOI
Hu D., Linders A., Yamak A., Correia C., Kijlstra J.D., Garakani A., Xiao L., Milan D.J., van der Meer P., Serra M., et al. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of hif1α and ldha. Circ. Res. 2018;123:1066–1079. doi: 10.1161/CIRCRESAHA.118.313249. PubMed DOI PMC
Eschenhagen T., Mummery C., Knollmann B.C. Modelling sarcomeric cardiomyopathies in the dish: From human heart samples to ipsc cardiomyocytes. Cardiovasc. Res. 2015;105:424–438. doi: 10.1093/cvr/cvv017. PubMed DOI PMC
Ronaldson-Bouchard K., Yeager K., Teles D., Chen T., Ma S., Song L., Morikawa K., Wobma H.M., Vasciaveo A., Ruiz E.C., et al. Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype. Nat. Protoc. 2019;14:2781–2817. doi: 10.1038/s41596-019-0189-8. PubMed DOI PMC
Kim D.H., Lipke E.A., Kim P., Cheong R., Thompson S., Delannoy M., Suh K.Y., Tung L., Levchenko A. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl. Acad. Sci. USA. 2010;107:565–570. doi: 10.1073/pnas.0906504107. PubMed DOI PMC
Ribeiro M.C., Tertoolen L.G., Guadix J.A., Bellin M., Kosmidis G., D’Aniello C., Monshouwer-Kloots J., Goumans M.J., Wang Y.L., Feinberg A.W., et al. Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro--correlation between contraction force and electrophysiology. Biomaterials. 2015;51:138–150. doi: 10.1016/j.biomaterials.2015.01.067. PubMed DOI
Parikh S.S., Blackwell D.J., Gomez-Hurtado N., Frisk M., Wang L., Kim K., Dahl C.P., Fiane A., Tonnessen T., Kryshtal D.O., et al. Thyroid and glucocorticoid hormones promote functional t-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 2017;121:1323–1330. doi: 10.1161/CIRCRESAHA.117.311920. PubMed DOI PMC
Jeziorowska D., Fontaine V., Jouve C., Villard E., Dussaud S., Akbar D., Letang V., Cervello P., Itier J.-M., Pruniaux M.-P., et al. Differential sarcomere and electrophysiological maturation of human ipsc-derived cardiac myocytes in monolayer vs. Aggregation-based differentiation protocols. Int. J. Mol. Sci. 2017;18:1173. doi: 10.3390/ijms18061173. PubMed DOI PMC
Bedada F.B., Chan S.S.K., Metzger S.K., Zhang L., Zhang J., Garry D.J., Kamp T.J., Kyba M., Metzger J.M. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem. Cell Rep. 2014;3:594–605. doi: 10.1016/j.stemcr.2014.07.012. PubMed DOI PMC
Qu C., Puttonen K.A., Lindeberg H., Ruponen M., Hovatta O., Koistinaho J., Lammi M.J. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int. J. Biochem. Cell Biol. 2013;45:1802–1812. doi: 10.1016/j.biocel.2013.05.029. PubMed DOI
Pesl M., Pribyl J., Acimovic I., Vilotic A., Jelinkova S., Salykin A., Lacampagne A., Dvorak P., Meli A.C., Skladal P., et al. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing. Biosens. Bioelectron. 2016;85:751–757. doi: 10.1016/j.bios.2016.05.073. PubMed DOI
Pribyl J., Pešl M., Caluori G., Acimovic I., Jelinkova S., Dvorak P., Skladal P., Rotrekl V. Biomechanical characterization of human pluripotent stem cell-derived cardiomyocytes by use of atomic force microscopy. In: Santos N.C., Carvalho F.A., editors. Atomic Force Microscopy: Methods and Protocols. Springer; New York, NY, USA: 2019. pp. 343–353. PubMed
Sleiman Y., Souidi M., Kumar R., Yang E., Jaffré F., Zhou T., Bernardin A., Reiken S., Cazorla O., Kajava A.V., et al. Modeling polymorphic ventricular tachycardia at rest using patient-specific induced pluripotent stem cell-derived cardiomyocytes. EBioMedicine. 2020;60:103024. doi: 10.1016/j.ebiom.2020.103024. PubMed DOI PMC
Jelinkova S., Vilotic A., Pribyl J., Aimond F., Salykin A., Acimovic I., Pesl M., Caluori G., Klimovic S., Urban T., et al. Dmd pluripotent stem cell derived cardiac cells recapitulate in vitro human cardiac pathophysiology. Front. Bioeng. Biotechnol. 2020;8:535. doi: 10.3389/fbioe.2020.00535. PubMed DOI PMC