Aminophylline Induces Two Types of Arrhythmic Events in Human Pluripotent Stem Cell-Derived Cardiomyocytes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35111056
PubMed Central
PMC8802108
DOI
10.3389/fphar.2021.789730
PII: 789730
Knihovny.cz E-zdroje
- Klíčová slova
- IPSC, aminophylline, arrhythmogenic effects, atomic force microscopy, cardiomyocytes, drug cardiotoxicity, hESC, methylxanthines,
- Publikační typ
- časopisecké články MeSH
Cardiac side effects of some pulmonary drugs are observed in clinical practice. Aminophylline, a methylxanthine bronchodilator with documented proarrhythmic action, may serve as an example. Data on the action of aminophylline on cardiac cell electrophysiology and contractility are not available. Hence, this study was focused on the analysis of changes in the beat rate and contraction force of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and HL-1 cardiomyocytes in the presence of increasing concentrations of aminophylline (10 µM-10 mM in hPSC-CM and 8-512 µM in HL-1 cardiomyocytes). Basic biomedical parameters, namely, the beat rate (BR) and contraction force, were assessed in hPSC-CMs using an atomic force microscope (AFM). The beat rate changes under aminophylline were also examined on the HL-1 cardiac muscle cell line via a multielectrode array (MEA). Additionally, calcium imaging was used to evaluate the effect of aminophylline on intracellular Ca2+ dynamics in HL-1 cardiomyocytes. The BR was significantly increased after the application of aminophylline both in hPSC-CMs (with 10 mM aminophylline) and in HL-1 cardiomyocytes (with 256 and 512 µM aminophylline) in comparison with controls. A significant increase in the contraction force was also observed in hPSC-CMs with 10 µM aminophylline (a similar trend was visible at higher concentrations as well). We demonstrated that all aminophylline concentrations significantly increased the frequency of rhythm irregularities (extreme interbeat intervals) both in hPSC-CMs and HL-1 cells. The occurrence of the calcium sparks in HL-1 cardiomyocytes was significantly increased with the presence of 512 µM aminophylline. We conclude that the observed aberrant cardiomyocyte response to aminophylline suggests an arrhythmogenic potential of the drug. The acquired data represent a missing link between the arrhythmic events related to the aminophylline/theophylline treatment in clinical practice and describe cellular mechanisms of methylxanthine arrhythmogenesis. An AFM combined with hPSC-CMs may serve as a robust platform for direct drug effect screening.
CEITEC Masaryk University Brno Czechia
Department of Biochemistry Faculty of Science Masaryk University Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Physiology Faculty of Medicine Masaryk University Brno Czechia
Department of Respiratory Diseases University Hospital Brno Brno Czechia
Faculty of Medicine Masaryk University Brno Czechia
International Clinical Research Center St Anne's University Hospital Brno Czechia
Zobrazit více v PubMed
Acimovic I., Refaat M. M., Moreau A., Salykin A., Reiken S., Sleiman Y., et al. (2018). Post-translational Modifications and Diastolic Calcium Leak Associated to the Novel RyR2-D3638a Mutation Lead to CPVT in Patient-specific hiPSC-Derived Cardiomyocytes. J. Clin. Med. 7, 423. 10.3390/jcm7110423 PubMed DOI PMC
Aslaksen A., Bakke O. M., Vigander T. (1981). Comparative Pharmacokinetics of Theophylline and Aminophylline in Man. Br. J. Clin. Pharmacol. 11, 269–273. 10.1111/j.1365-2125.1981.tb00533.x PubMed DOI PMC
Bébarová M., Matejovič P., Švecová O., Kula R., Šimurdová M., Šimurda J. (2017). Nicotine at Clinically Relevant Concentrations Affects Atrial Inward Rectifier Potassium Current Sensitive to Acetylcholine. Naunyn-schmiedeberg's Arch. Pharmacol. 390, 471–481. 10.1007/s00210-017-1341-z PubMed DOI
Belardinelli L., Shryock J. C., Song Y., Wang D., Srinivas M. (1995). Ionic Basis of the Electrophysiological Actions of Adenosine on Cardiomyocytes. FASEB J. 9, 359–365. 10.1096/fasebj.9.5.7896004 PubMed DOI
Berisha F., Götz K. R., Wegener J. W., Brandenburg S., Subramanian H., Molina C. E., et al. (2021). cAMP Imaging at Ryanodine Receptors Reveals β2-Adrenoceptor Driven Arrhythmias. Circ. Res. 129, 81–94. 10.1161/CIRCRESAHA.120.318234 PubMed DOI
Binah O., Weissman A., Itskovitz-Eldor J., Rosen M. R. (2013). Integrating Beat Rate Variability: from Single Cells to Hearts. Heart Rhythm 10, 928–932. 10.1016/j.hrthm.2013.02.013 PubMed DOI PMC
Bittar G., Friedman H. S. (1991). The Arrhythmogenicity of Theophylline. A Multivariate Analysis of Clinical Determinants. Chest 99, 1415–1420. 10.1378/chest.99.6.1415 PubMed DOI
Burridge P. W., Keller G., Gold J. D., Wu J. C. (2012). Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming. Cell Stem Cell 10, 16–28. 10.1016/j.stem.2011.12.013 PubMed DOI PMC
Caluori G., Pribyl J., Cmiel V., Pesl M., Potocnak T., Provaznik I., et al. (2019a). Simultaneous Study of Mechanobiology and Calcium Dynamics on hESC-Derived Cardiomyocytes Clusters. J. Mol. Recognit. 32, e2760. 10.1002/jmr.2760 PubMed DOI
Caluori G., Pribyl J., Pesl M., Jelinkova S., Rotrekl V., Skladal P., et al. (2019b). Non-invasive Electromechanical Cell-Based Biosensors for Improved Investigation of 3D Cardiac Models. Biosens. Bioelectron. 124-125 (125), 129–135. 10.1016/j.bios.2018.10.021 PubMed DOI
Charytan D., Jansen K. (2003). Severe Metabolic Complications from Theophylline Intoxication. Nephrology (Carlton) 8, 239–242. 10.1046/j.1440-1797.2003.00181.x PubMed DOI
Conte L., Pugliese N. R., Giannoni A. (2017). Reversal of Ticagrelor-Induced Arrhythmias and Cheyne-Stokes Respiration with Aminophylline Infusion. J. Cardiovasc. Pharmacol. 70, 290–292. 10.1097/FJC.0000000000000518 PubMed DOI
Cui J., Melman Y., Palma E., Fishman G. I., McDonald T. V. (2000). Cyclic AMP Regulates the HERG K(+) Channel by Dual Pathways. Curr. Biol. 10, 671–674. 10.1016/s0960-9822(00)00516-9 PubMed DOI
Kabanov D. (2021). DaniilKabanov/CardioScripts. Available at: https://github.com/DaniilKabanov/CardioScripts [Accessed September 14, 2021].
Dinarelli S., Girasole M., Spitalieri P., Talarico R. V., Murdocca M., Botta A., et al. (2018). AFM Nano-Mechanical Study of the Beating Profile of hiPSC-Derived Cardiomyocytes Beating Bodies WT and DM1. J. Mol. Recognit 31, e2725. 10.1002/jmr.2725 PubMed DOI
Dvorak P., Dvorakova D., Koskova S., Vodinska M., Najvirtova M., Krekac D., et al. (2005). Expression and Potential Role of Fibroblast Growth Factor 2 and its Receptors in Human Embryonic Stem Cells. Stem Cells 23, 1200–1211. 10.1634/stemcells.2004-0303 PubMed DOI
Ellis E. F. (1985). Theophylline Toxicity. J. Allergy Clin. Immunol. 76, 297–301. 10.1016/0091-6749(85)90645-1 PubMed DOI
Fraticelli A., Josephson R., Danziger R., Lakatta E., Spurgeon H. (1989). Morphological and Contractile Characteristics of Rat Cardiac Myocytes from Maturation to Senescence. Am. J. Physiol. 257, H259–H265. 10.1152/ajpheart.1989.257.1.H259 PubMed DOI
Goldberg M. J., Park G. D., Berlinger W. G. (1986). Treatment of Theophylline Intoxication. J. Allergy Clin. Immunol. 78, 811–817. 10.1016/0091-6749(86)90066-7 PubMed DOI
Goudis C. A. (2017). Chronic Obstructive Pulmonary Disease and Atrial Fibrillation: An Unknown Relationship. J. Cardiol. 69, 699–705. 10.1016/j.jjcc.2016.12.013 PubMed DOI
Higgins R. M., Hearing S., Goldsmith D. J., Keevil B., Venning M. C., Ackrill P. (1995). Severe Theophylline Poisoning: Charcoal Haemoperfusion or Haemodialysis. Postgrad. Med. J. 71, 224–226. 10.1136/pgmj.71.834.224 PubMed DOI PMC
Hoppe L. K., Muhlack D. C., Koenig W., Carr P. R., Brenner H., Schöttker B. (2018). Association of Abnormal Serum Potassium Levels with Arrhythmias and Cardiovascular Mortality: a Systematic Review and Meta-Analysis of Observational Studies. Cardiovasc. Drugs Ther. 32, 197–212. 10.1007/s10557-018-6783-0 PubMed DOI
Horita N., Miyazawa N., Kojima R., Inoue M., Ishigatsubo Y., Kaneko T. (2016). Chronic Use of Theophylline and Mortality in Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Arch. Bronconeumol 52, 233–238. 10.1016/j.arbres.2015.02.021 PubMed DOI
Huerta C., Lanes S. F., García Rodríguez L. A. (2005). Respiratory Medications and the Risk of Cardiac Arrhythmias. Epidemiology 16, 360–366. 10.1097/01.ede.0000158743.90664.a7 PubMed DOI
International Stem Cell Initiative Adewumi O., Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P. W., et al. (2007). Characterization of Human Embryonic Stem Cell Lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816. 10.1038/nbt1318 PubMed DOI
Jelinkova S., Fojtik P., Kohutova A., Vilotic A., Marková L., Pesl M., et al. (2019). Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells 8. 10.3390/cells8010053 PubMed DOI PMC
Jelinkova S., Vilotic A., Pribyl J., Aimond F., Salykin A., Acimovic I., et al. (2020). DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate In Vitro Human Cardiac Pathophysiology. Front. Bioeng. Biotechnol. 8, 535. 10.3389/fbioe.2020.00535 PubMed DOI PMC
Klimovic S., Scurek M., Pesl M., Beckerova D., Jelinkova S., Urban T., et al. (2021). Aminophylline Induces Two Types of Arrhythmic Events in Human Pluripotent Stem Cell-Derived Cardiomyocytes - Dataset. 10.5281/zenodo.4552607 PubMed DOI PMC
Komadina K. H., Carlson T. A., Strollo P. J., Navratil D. L. (1992). Electrophysiologic Study of the Effects of Aminophylline and Metaproterenol on Canine Myocardium. Chest 101, 232–238. 10.1378/chest.101.1.232 PubMed DOI
Krutá M., Šeneklová M., Raška J., Salykin A., Zerzánková L., Pešl M., et al. (2014). Mutation Frequency Dynamics inHPRTLocus in Culture-Adapted Human Embryonic Stem Cells and Induced Pluripotent Stem Cells Correspond to Their Differentiated Counterparts. Stem Cell Dev. 23, 2443–2454. 10.1089/scd.2013.0611 PubMed DOI PMC
Laaban J. P., Iung B., Chauvet J. P., Psychoyos I., Proteau J., Rochemaure J. (1988). Cardiac Arrhythmias during the Combined Use of Intravenous Aminophylline and Terbutaline in Status Asthmaticus. Chest 94, 496–502. 10.1378/chest.94.3.496 PubMed DOI
Lee T. A., Schumock G. T., Bartle B., Pickard A. S. (2009). Mortality Risk in Patients Receiving Drug Regimens with Theophylline for Chronic Obstructive Pulmonary Disease. Pharmacotherapy 29, 1039–1053. 10.1592/phco.29.9.1039 PubMed DOI
Liu J., Sun N., Bruce M. A., Wu J. C., Butte M. J. (2012). Atomic Force Mechanobiology of Pluripotent Stem Cell-Derived Cardiomyocytes. PLoS ONE 7, e37559. 10.1371/journal.pone.0037559 PubMed DOI PMC
Mandel Y., Weissman A., Schick R., Barad L., Novak A., Meiry G., et al. (2012). Human Embryonic and Induced Pluripotent Stem Cell-Derived Cardiomyocytes Exhibit Beat Rate Variability and Power-Law Behavior. Circulation 125, 883–893. 10.1161/CIRCULATIONAHA.111.045146 PubMed DOI PMC
Nadkarni S., Hay A. W., Faye S., Congdon P. J. (1988). The Relationship between Theophylline, Caffeine and Heart Rate in Neonates. Ann. Clin. Biochem. 25 ( Pt 4) (Pt 4), 408–410. 10.1177/000456328802500415 PubMed DOI
Nair P., Milan S. J., Rowe B. H. (2012). Addition of Intravenous Aminophylline to Inhaled Beta(2)-Agonists in Adults with Acute Asthma. Cochrane Database Syst. Rev. 12, CD002742. 10.1002/14651858.CD002742.pub2 PubMed DOI PMC
Niehoff J., Matzkies M., Nguemo F., Hescheler J., Reppel M. (2019). The Effect of Antiarrhythmic Drugs on the Beat Rate Variability of Human Embryonic and Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Sci. Rep. 9, 14106. 10.1038/s41598-019-50557-7 PubMed DOI PMC
Odstrcilik J., Cmiel V., Kolar R., Ronzhina M., Baiazitova L., Pesl M., et al. (2015). “Computer Analysis of Isolated Cardiomyocyte Contraction Process via Advanced Image Processing Techniques,” in 2015 Computing in Cardiology Conference (CinC) (Nice, France: IEEE; ), 453–456. 10.1109/CIC.2015.7408684 DOI
Onodera K., Shibata M., Kojima J., Wachi M., Sogawa N., Furuta H., et al. (2001). Toxicity of Theophylline Depends on Plasma Concentration by Single and Also Repeated Dosing in Rats. Pharmacol. Res. 44, 81–87. 10.1006/phrs.2001.0831 PubMed DOI
Pasnoori V. R., Leesar M. A. (2004). Use of Aminophylline in the Treatment of Severe Symptomatic Bradycardia Resistant to Atropine. Cardiol. Rev. 12, 65–68. 10.1097/01.crd.0000096418.72821.fa PubMed DOI
Pesl M., Acimovic I., Pribyl J., Hezova R., Vilotic A., Fauconnier J., et al. (2014). Forced Aggregation and Defined Factors Allow Highly Uniform-Sized Embryoid Bodies and Functional Cardiomyocytes from Human Embryonic and Induced Pluripotent Stem Cells. Heart Vessels 29, 834–846. 10.1007/s00380-013-0436-9 PubMed DOI
Pribyl J., Pešl M., Caluori G., Acimovic I., Jelinkova S., Dvorak P., et al. (20191886). Biomechanical Characterization of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Use of Atomic Force Microscopy. Methods Mol. Biol. 1886, 343–353. 10.1007/978-1-4939-8894-5_20 PubMed DOI
Rowe D. J., Watson I. D., Williams J., Berry D. J. (1988). The Clinical Use and Measurement of Theophylline. Ann. Clin. Biochem. 25 ( Pt 1), 4–26. 10.1177/000456328802500102 PubMed DOI
Sartiani L., Bettiol E., Stillitano F., Mugelli A., Cerbai E., Jaconi M. E. (2007). Developmental Changes in Cardiomyocytes Differentiated from Human Embryonic Stem Cells: a Molecular and Electrophysiological Approach. Stem Cells 25, 1136–1144. 10.1634/stemcells.2006-0466 PubMed DOI
Shamsuzzaman M., Kavita G., Arunabha R. (2016). Methylxanthine Induced Cardiotoxicity and its Mechanisms: An Experimental Study. MJMS 1, 10.
Shannon M. (1999). Life-threatening Events after Theophylline Overdose: a 10-year Prospective Analysis. Arch. Intern. Med. 159, 989–994. 10.1001/archinte.159.9.989 PubMed DOI
Singh D., Agusti A., Anzueto A., Barnes P. J., Bourbeau J., Celli B. R., et al. (2019). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD Science Committee Report 2019. Eur. Respir. J. 53. 10.1183/13993003.00164-2019 PubMed DOI
Souidi M., Sleiman Y., Acimovic I., Pribyl J., Charrabi A., Baecker V., et al. (2021). Oxygen Is an Ambivalent Factor for the Differentiation of Human Pluripotent Stem Cells in Cardiac 2D Monolayer and 3D Cardiac Spheroids. Ijms 22, 662. 10.3390/ijms22020662 PubMed DOI PMC
Suissa S., Hemmelgarn B., Blais L., Ernst P. (1996). Bronchodilators and Acute Cardiac Death. Am. J. Respir. Crit. Care Med. 154, 1598–1602. 10.1164/ajrccm.154.6.8970341 PubMed DOI
Tse G., Liu T., Li K. H., Laxton V., Wong A. O., Chan Y. W., et al. (2017). Tachycardia-bradycardia Syndrome: Electrophysiological Mechanisms and Future Therapeutic Approaches (Review). Int. J. Mol. Med. 39, 519–526. 10.3892/ijmm.2017.2877 PubMed DOI PMC
Ukena D., Schudt C., Sybrecht G. W. (1993). Adenosine Receptor-Blocking Xanthines as Inhibitors of Phosphodiesterase Isozymes. Biochem. Pharmacol. 45, 847–851. 10.1016/0006-2952(93)90168-v PubMed DOI
Varriale P., Ramaprasad S. (1993). Aminophylline Induced Atrial Fibrillation. Pacing Clin. Electrophysiol. 16, 1953–1955. 10.1111/j.1540-8159.1993.tb00987.x PubMed DOI
Vestal R. E., Eiriksson C. E., Musser B., Ozaki L. K., Halter J. B. (1983). Effect of Intravenous Aminophylline on Plasma Levels of Catecholamines and Related Cardiovascular and Metabolic Responses in Man. Circulation 67, 162–171. 10.1161/01.cir.67.1.162 PubMed DOI
Ye C., Miao C., Yu L., Dong Z., Zhang J., Mao Y., et al. (2019). Factors Affecting the Efficacy and Safety of Aminophylline in Treatment of Apnea of Prematurity in Neonatal Intensive Care Unit. Pediatr. Neonatol 60, 43–49. 10.1016/j.pedneo.2018.03.008 PubMed DOI
Zatloukal J., Brat K., Neumannova K., Volakova E., Hejduk K., Kocova E., et al. (2020). Chronic Obstructive Pulmonary Disease - Diagnosis and Management of Stable Disease; a Personalized Approach to Care, Using the Treatable Traits Concept Based on Clinical Phenotypes. Position Paper of the Czech Pneumological and Phthisiological Society. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub 164, 325–356. 10.5507/bp.2020.056 PubMed DOI
Salbutamol attenuates arrhythmogenic effect of aminophylline in a hPSC-derived cardiac model