Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
28160016
DOI
10.1007/s00210-017-1341-z
PII: 10.1007/s00210-017-1341-z
Knihovny.cz E-resources
- Keywords
- Acetylcholine-sensitive, Dual effect, Inward rectifier, Nicotine,
- MeSH
- Acetylcholine pharmacology MeSH
- Time Factors MeSH
- G Protein-Coupled Inwardly-Rectifying Potassium Channels agonists drug effects MeSH
- Ethanol toxicity MeSH
- Risk Assessment MeSH
- Myocytes, Cardiac drug effects metabolism MeSH
- Membrane Potentials MeSH
- Nicotine toxicity MeSH
- Rats, Wistar MeSH
- Arrhythmias, Cardiac chemically induced metabolism MeSH
- Heart Atria drug effects metabolism MeSH
- In Vitro Techniques MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholine MeSH
- G Protein-Coupled Inwardly-Rectifying Potassium Channels MeSH
- Ethanol MeSH
- Nicotine MeSH
Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.
See more in PubMed
J Physiol Pharmacol. 2014 Aug;65(4):497-509 PubMed
Am J Cardiol. 2001 Aug 1;88(3):322-5 PubMed
Gen Physiol Biophys. 2005 Mar;24(1):27-45 PubMed
Br Med J. 1980 Apr 5;280(6219):972-6 PubMed
Circulation. 2014 Jan 7;129(1):28-41 PubMed
Eur J Pharmacol. 2011 Oct 1;668(1-2):72-7 PubMed
J Am Coll Cardiol. 2007 Mar 27;49(12):1340-8 PubMed
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18309-14 PubMed
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15631-6 PubMed
Cardiovasc Res. 2007 Jun 1;74(3):426-37 PubMed
J Cardiovasc Pharmacol. 2008 Aug;52(2):129-35 PubMed
Heart Lung Circ. 2014 Sep;23 (9):827-32 PubMed
J Physiol Pharmacol. 2016 Jun;67(3):339-51 PubMed
Biochem Pharmacol. 2013 Jul 15;86(2):267-78 PubMed
J Cardiovasc Electrophysiol. 2006 Sep;17(9):931-6 PubMed
Arch Environ Health. 1982 Nov-Dec;37(6):365-9 PubMed
JAMA. 1986 Feb 28;255(8):1018 PubMed
Vascul Pharmacol. 2002 Jul;39(1-2):55-61 PubMed
Gen Pharmacol. 1997 Jan;28(1):39-44 PubMed
J Emerg Med. 2015 Dec;49(6):e183-6 PubMed
Circulation. 2000 Sep 5;102(10):1165-71 PubMed
Adv Pharmacol. 2014;70:393-409 PubMed
Life Sci. 1999;65(12):PL143-9 PubMed
Br J Clin Pharmacol. 2002 Oct;54(4):407-14 PubMed
Europace. 2017 Mar 1;19(3):346-355 PubMed
Am J Cardiol. 2003 Aug 15;92(4):489-92 PubMed
Circ Res. 2014 Apr 25;114(9):1483-99 PubMed
Nat Neurosci. 2009 Aug;12(8):988-95 PubMed
Cardiovasc Drugs Ther. 1997 Jan;10(6):657-65 PubMed
J Mol Cell Cardiol. 2013 Aug;61:142-52 PubMed
Br Heart J. 1985 Aug;54(2):222-3 PubMed
Int J Cardiol. 2016 Sep 1;218:259-266 PubMed
Cardiovasc Res. 2016 Apr 1;109 (4):467-79 PubMed
J Physiol. 2000 Dec 15;529 Pt 3:699-705 PubMed
Heart Dis. 2003 Mar-Apr;5(2):100-1 PubMed
Drug Alcohol Depend. 1993 Jun;33(1):23-9 PubMed
Jpn Heart J. 1989 Nov;30(6):827-39 PubMed
Clin Pharmacol Ther. 1981 Aug;30(2):201-9 PubMed
Circ Arrhythm Electrophysiol. 2010 Oct;3(5):472-80 PubMed
Toxicol Appl Pharmacol. 2000 Apr 1;164(1):97-101 PubMed
Adv Clin Exp Med. 2015 Nov-Dec;24(6):973-8 PubMed
Chest. 1982 Mar;81(3):302-7 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2016 Oct;389(10 ):1049-58 PubMed
J Cardiovasc Pharmacol. 2005 May;45(5):447-55 PubMed
PLoS Comput Biol. 2012;8(10):e1002710 PubMed
Circulation. 2005 Dec 13;112(24):3697-706 PubMed
Cardiovasc Res. 2003 Oct 1;59(4):863-73 PubMed
Cardiology. 2001;96(1):58 PubMed
Salbutamol attenuates arrhythmogenic effect of aminophylline in a hPSC-derived cardiac model