A molecular phylogeny of Asian species of the genus Metagonimus (Digenea)--small intestinal flukes--based on representative Japanese populations

. 2016 Mar ; 115 (3) : 1123-30. [epub] 20151128

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26614357
Odkazy

PubMed 26614357
DOI 10.1007/s00436-015-4843-y
PII: 10.1007/s00436-015-4843-y
Knihovny.cz E-zdroje

Metagonimus Katsurada, 1912 is a genus of small intestinal parasites. The genus comprises eight species, primarily from far-eastern Asia, with two exceptions reported from Europe. Metagonimus yokogawai, the most widespread species, is the main agent responsible for the intestinal disease, metagonimiasis, in Japan and some other East Asian countries. On the basis of the ratio of the size of the ventral and oral suckers, Metagonimus has traditionally been morphologically divided into two groups; however, the genus has not been extensively studied using molecular data. To reveal phylogenetic relationships within Metagonimus based on molecular data, we analyzed six of the seven species present in Asia using samples collected in central Japan. Maximum likelihood and Bayesian analyses of a combined 28S ribosomal DNA (rDNA), internal transcribed spacer 2 (ITS2), and mitochondrial cox1 gene sequence dataset separated the six species into two well-supported clades. One clade comprised M. yokogawai, M. takahashii, M. miyatai, and M. hakubaensis, whereas the other consisted of M. otsurui and M. katsuradai. Genetic distances calculated from 28S rDNA and ITS2 nucleotide sequences and a comparison of the predicted amino acid sequences of cox1 gene suggested that M. otsurui and M. katsuradai may have diverged recently. None of the four main morphological characters used to delimit species of Metagonimus (i.e., sucker ratio, positions of the uterus and testes, and distribution of vitelline follicles) was consistent with the distribution of species in the molecular tree.

Zobrazit více v PubMed

Korean J Parasitol. 2009 Oct;47 Suppl:S103-13 PubMed

Syst Biol. 2012 May;61(3):539-42 PubMed

Kisaengchunghak Chapchi. 1991 Sep;29(3):217-25 PubMed

Parasitol Int. 2006 Sep;55(3):201-6 PubMed

Parasitol Int. 2002 Sep;51(3):271-80 PubMed

Vet Parasitol. 2009 Mar 9;160(1-2):66-75 PubMed

Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed

Kisaengchunghak Chapchi. 1969 Dec;7(3):129-142 PubMed

Korean J Parasitol. 1997 Dec;35(4):223-32 PubMed

J Nippon Med Sch. 2008 Feb;75(1):32-5 PubMed

Am J Trop Med Hyg. 1994 Jan;50(1):33-44 PubMed

Parasitol Int. 2012 Mar;61(1):90-3 PubMed

Int J Parasitol. 2003 Jul;33(7):733-55 PubMed

Parasitology. 2003 Mar;126(Pt 3):203-24 PubMed

Mol Biol Evol. 1997 Jul;14(7):733-40 PubMed

Korean J Parasitol. 2004 Sep;42(3):129-35 PubMed

Korean J Parasitol. 2006 Mar;44(1):7-13 PubMed

Parasitol Int. 2010 Sep;59(3):460-5 PubMed

Indian J Med Microbiol. 2005 Jan;23(1):61-2 PubMed

Korean J Parasitol. 2009 Oct;47 Suppl:S69-102 PubMed

Korean J Parasitol. 2000 Mar;38(1):33-6 PubMed

Southeast Asian J Trop Med Public Health. 2008 Mar;39(2):217-21 PubMed

Int J Parasitol. 2005 Oct;35(11-12):1233-54 PubMed

Parasitol Res. 2007 Apr;100(5):1075-82 PubMed

Mol Biol Evol. 2013 Jul;30(7):1720-8 PubMed

Bioinformatics. 2007 Nov 1;23(21):2947-8 PubMed

Korean J Parasitol. 2015 Oct;53(5):627-39 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...