The intriguing effect of ethanol and nicotine on acetylcholine-sensitive potassium current IKAch: Insight from a quantitative model

. 2019 ; 14 (10) : e0223448. [epub] 20191010

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31600261

Recent experimental work has revealed unusual features of the effect of certain drugs on cardiac inwardly rectifying potassium currents, including the constitutively active and acetylcholine-induced components of acetylcholine-sensitive current (IKAch). These unusual features have included alternating susceptibility of the current components to activation and inhibition induced by ethanol or nicotine applied at various concentrations, and significant correlation between the drug effect and the current magnitude measured under drug-free conditions. To explain these complex drug effects, we have developed a new type of quantitative model to offer a possible interpretation of the effect of ethanol and nicotine on the IKAch channels. The model is based on a description of IKAch as a sum of particular currents related to the populations of channels formed by identical assemblies of different α-subunits. Assuming two different channel populations in agreement with the two reported functional IKAch-channels (GIRK1/4 and GIRK4), the model was able to simulate all the above-mentioned characteristic features of drug-channel interactions and also the dispersion of the current measured in different cells. The formulation of our model equations allows the model to be incorporated easily into the existing integrative models of electrical activity of cardiac cells involving quantitative description of IKAch. We suppose that the model could also help make sense of certain observations related to the channels that do not show inward rectification. This new ionic channel model, based on a concept we call population type, may allow for the interpretation of complex interactions of drugs with ionic channels of various types, which cannot be done using the ionic channel models available so far.

Zobrazit více v PubMed

Bébarová M, Matejovič P, Pásek M, Šimurdová M, Šimurda J. Dual effect of ethanol on inward rectifier potassium current IK1 in rat ventricular myocytes. J Physiol Pharmacol. 2014;65: 497–502. PubMed

Hořáková Z, Matejovič P, Pásek M, Hošek J, Šimurdová M, Šimurda J. Effect of ethanol and acetaldehyde at clinically relevant concentrations on atrial inward rectifier potassium current IK1: separate and combine effect. J Physiol Pharmacol. 2016;67: 339–351. PubMed

Bébarová M, Matejovič P, Pásek M, Hořáková Z, Hošek J, Šimurdová M, et al. Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine. Naunyn-Schmiedeberg´s Arch Pharmacol. 2016;389: 1049–1058. PubMed

Bébarová M, Matejovič P, Švecová O, Kula R, Šimurdová M, Šimurda J. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine. Naunyn-Schmiedeberg´s Arch Pharmacol. 2017;390: 471–481. PubMed

Weigl LG, Schreibmayer WG. Protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics. Mol Pharmacol. 2001;60: 282–289. 10.1124/mol.60.2.282 PubMed DOI

Milovic S, Steinecker-Frohnwieser B, Schreibmayer W, Weigl LG. The sensitivity of G protein-activated K+ channels toward halothane is essentially determined by the C terminus. J Biol Chem. 2004;279: 34240–34249. 10.1074/jbc.M403448200 PubMed DOI

Dhamoon AS, Pandit SV, Sarmast F, Parisian KR, Guha P, Li Y, et al. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ Res. 2004;94: 1332–1339. 10.1161/01.RES.0000128408.66946.67 PubMed DOI

Ehrlich JR. Inward rectifier potassium currents as a target for atrial fibrillation therapy. J Cardiovasc Pharmacol. 2008;52: 129–135. 10.1097/FJC.0b013e31816c4325 PubMed DOI

Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90: 291–366. 10.1152/physrev.00021.2009 PubMed DOI

Šimurda J, Šimurdová M, Bébarová M. Inward rectifying potassium currents resolved into components: modeling of complex actions. Pflugers Arch–Eur J Physiol. 2018;470: 315–325. PubMed

Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature. 1995;374: 135–141. 10.1038/374135a0 PubMed DOI

Corey S, Krapivinsky G, Krapivinsky L, Clapham DE. Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh. J Biol Chem. 1998;273: 5271–5278. 10.1074/jbc.273.9.5271 PubMed DOI

Corey S, Clapham DE. Identification of native atrial G-protein-regulated inwardly rectifying K+ (GIRK4) channel homomultimers. J Biol Chem. 1998;273: 27499–27504. PubMed

Kennedy ME, Nemec J, Corey S, Wickman K, Clapham DE. GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels. J Biol Chem. 1999;274: 2571–2582. 10.1074/jbc.274.4.2571 PubMed DOI

Bender K, Wellner-Kienitz MC, Inanobe A, Meyer T, Kurachi Y, Pott L. Overexpression of monomeric and multimeric GIRK4 subunits in rat atrial myocytes removes fast desensitization and reduces inward rectification of muscarinic K+current (IK(ACh)). Evidence for functional homomeric GIRK4 channels. J Biol Chem. 2001; 276: 28873–28880. 10.1074/jbc.M102328200 PubMed DOI

Touhara KK, Wang W, MacKinnon R (2016) The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers. eLife;5:e15750 10.7554/eLife.15750 PubMed DOI PMC

Mirshahi T, Logothetis DE. Molecular determinants responsible for differential cellular distribution of G protein-gated inwardly rectifying K+ channels. J Biol Chem. 2004;279: 11890–11897. PubMed

Inanobe A, Kurachi Y. Membrane channels as integrators of G-protein-mediated signaling. Biochim Biophys Acta. 2014;1838: 521–531. 10.1016/j.bbamem.2013.08.018 PubMed DOI

Lewohl JM, Wilson WR, Mayfield RD, Brozowski SJ, Morrisett RA, Harris RA. Gprotein coupled inwardly rectifying potassium channels are targets of alcohol action. Nat Neurosci. 1999;2: 1084–1090. 10.1038/16012 PubMed DOI

Aryal P, Dvir H, Choe S, Slesinger PA. A discrete alcohol pocket involved in GIRK channel activation. Nat Neurosci. 2009;12: 988–995. 10.1038/nn.2358 PubMed DOI PMC

Mahajan R, Ha J, Zhang M, Kawano T, Kozasa T, Logothetis DE. Computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Sci Signal. 2013;6:ra69 10.1126/scisignal.2004075 PubMed DOI PMC

Toyama Y, Kano H, Mase Y, Yokogawa M, Osawa M, Shimada I. Structural basis for the ethanol action on G-protein–activated inwardly rectifying potassium hannel 1 revealed by NMR spectroscopy. PNAS. 2018;115: 3858–3863. 10.1073/pnas.1722257115 PubMed DOI PMC

Bodhinathan K, Slesinger PA. Molecular mechanism underlying ethanol activation of G-protein-gated inwardly rectifying potassium channels. Proc Natl Acad Sci USA. 2013;110: 18309–18314. 10.1073/pnas.1311406110 PubMed DOI PMC

Treiber F, Rosker C, Keren-Raifman T, Steinecker B, Gorischek A, Dascal N, et al. Molecular basis of the facilitation of the heterooligomeric GIRK1/GIRK4 complex by cAMP dependent protein kinase. Biochim Biophys Acta. 2013;1828: 1214–1221. 10.1016/j.bbamem.2012.12.016 PubMed DOI PMC

Li J, Lü S, Liu Y, Pang C, Chen Y, S Zhang, et al. Identification of the conformational transition pathway in PIP2 opening Kir channels. Sci Rep. 2015;5: 11289 10.1038/srep11289 PubMed DOI PMC

Christé G, Tebbakh H, Šimurdová M, Forrat R, Šimurda J. Propafenone blocks ATP-sensitive K+ channels in rabbit atrial and ventricular cardiomyocytes. Eur J Pharmacol. 1999;373: 223–232. 10.1016/s0014-2999(99)00217-4 PubMed DOI

Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology. 2004;29: 1841–1851. 10.1038/sj.npp.1300484 PubMed DOI

Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by ifenprodil. Neuropsychopharmacology. 2006;31: 516–524. 10.1038/sj.npp.1300844 PubMed DOI

Caballero R, Dolz-Gaitón P, Gómez R, Amorós I, Barana A, González de la Fuente M, et al. Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. PNAS. 2010;107: 15631–15636. 10.1073/pnas.1004021107 PubMed DOI PMC

Walsh KB. A real-time screening assay for GIRK1/4 channel blockers. J Biomol Screen. 2010;15: 1229–1237. 10.1177/1087057110381384 PubMed DOI

Ferrer T, Ponce-Balbuena D, López-Izquierdo A, Aréchiga-Figueroa IA, de Boer TP, van der Heyden MAG, et al. Carvedilol inhibits Kir2.3 channels by interference with PIP2-channel interaction. Eur J Pharmacol. 2011;668: 72–77. 10.1016/j.ejphar.2011.05.067 PubMed DOI

Liu QH, Li XL, Xu YW, Lin YY, Cao JM, Wu BW. A novel discovery of IK1 channel agonist: zacopride selectively enhances IK1 current and suppresses triggered arrhythmias in the rat. J Cardiovasc Pharmacol. 2012;59: 37–48. 10.1097/FJC.0b013e3182350bcc PubMed DOI

Vanheiden S, Pott L, Kienitz MC. Voltage-dependent open-channel block of G protein-gated inward-rectifying K+ (GIRK) current in rat atrial myocytes by tamoxifen. Naunyn-Schmiedeberg's Arch Pharmacol. 2012;385: 1149–1160. PubMed

Gómez R, Caballero R, Barana A, Amorós I, DePalm SH, Matamoros M, et al. Structural basis of drugs that increase cardiac inward rectifier Kir2.1 currents. Cardiovasc Res. 2014;104: 337–346. 10.1093/cvr/cvu203 PubMed DOI

Kobayashi T, Ikeda K, Kojima H, Niki H, Yano R, Yoshioka T, et al. Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci. 1999;2: 1091–1097. 10.1038/16019 PubMed DOI

Yamakura T, Lewohl JM, Harris RA. Differential effects of general anesthetics on G protein–coupled inwardly rectifying and other potassium channels. Anesthesiology. 2001;95: 144–153. 10.1097/00000542-200107000-00025 PubMed DOI

Bébarová M, Matejovič P, Pásek M, Ohlídalová D, Jansová D, Šimurdová M, et al. Effect of ethanol on action potential and ionic membrane currents in rat ventricular myocytes. Acta Physiol (Oxf). 2010;200: 301–314. PubMed

Zuo Y, Aistrup GL, Marszalec W, Gillespie A, Chavez-Noriega LE, Yeh JZ, et al. Dual action of n-alcohols on neuronal nicotinic acetylcholine receptors. J Mol Pharmacol. 2001;6: 700–711. PubMed

Borghese CM, Henderson LA, Bleck V, Trudell JR, Harris RA. Sites of excitatory and inhibitory actions of alcohols on neuronal α2 β4 nicotinic acetylcholine receptors. J Pharmacol Exper Ther. 2003;307: 42–52. PubMed

Murail S, Howard RJ, Broemstrup T, Bertaccini EJ, Harris RA, Trudell JR, et al. Molecular mechanism for the dual alcohol modulation of cys-loop receptors. PloS Comput Biol. 2012;8: e1002710 10.1371/journal.pcbi.1002710 PubMed DOI PMC

Zhou W, Arrabit C, Choe S, Slesinger PA. Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels. PNAS. 2001;98:6482–6487. 10.1073/pnas.111447798 PubMed DOI PMC

Huang CL, Feng S, Hilgemann DW. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature. 1998;391: 803–806. 10.1038/35882 PubMed DOI

Zhang H, He C, Yan X, Mirshahi T, Logothetis DE. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol. 1999;1: 183–188. 10.1038/11103 PubMed DOI

Xie LH, John SA, Ribalet B, Weiss JN. Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): interaction with other regulatory ligands. Prog Biophys Mol Biol. 2007;94: 320–335. 10.1016/j.pbiomolbio.2006.04.001 PubMed DOI

Lacin E, Aryal P Glaaser IW, Bodhinathan K, Tsai E, Marsh N, et al. Dynamic role of the tether helix in PIP2-dependent gating of a G protein–gated potassium channel. J Gen Physiol. 2017. July 18 pii: jgp.201711801 10.1085/jgp.201711801 PubMed DOI PMC

Logothetis DE, Jin T, Lupyan D, Rosenhouse-Dantsker A. Phosphoinositidemediated gating of inwardly rectifying K+ channels. Pflugers Arch—Eur J Physiol. 2007;455: 83–95. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aminophylline at clinically relevant concentrations affects inward rectifier potassium current in a dual way

. 2022 Mar ; 474 (3) : 303-313. [epub] 20220126

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace