Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30650618
PubMed Central
PMC6356905
DOI
10.3390/cells8010053
PII: cells8010053
Knihovny.cz E-zdroje
- Klíčová slova
- DMD, NO synthases, ROS, dystrophin, genome stability, pluripotent stem cells,
- MeSH
- buněčné linie MeSH
- Duchennova muskulární dystrofie genetika MeSH
- dystrofin nedostatek genetika MeSH
- indukované pluripotentní kmenové buňky metabolismus patologie MeSH
- lidé MeSH
- nestabilita genomu * MeSH
- oxidační stres MeSH
- reaktivní formy kyslíku metabolismus MeSH
- synthasa oxidu dusnatého, typ I metabolismus MeSH
- synthasa oxidu dusnatého, typ II metabolismus MeSH
- synthasa oxidu dusnatého, typ III metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dystrofin MeSH
- NOS1 protein, human MeSH Prohlížeč
- NOS2 protein, human MeSH Prohlížeč
- NOS3 protein, human MeSH Prohlížeč
- reaktivní formy kyslíku MeSH
- synthasa oxidu dusnatého, typ I MeSH
- synthasa oxidu dusnatého, typ II MeSH
- synthasa oxidu dusnatého, typ III MeSH
Recent data on Duchenne muscular dystrophy (DMD) show myocyte progenitor's involvement in the disease pathology often leading to the DMD patient's death. The molecular mechanism underlying stem cell impairment in DMD has not been described. We created dystrophin-deficient human pluripotent stem cell (hPSC) lines by reprogramming cells from two DMD patients, and also by introducing dystrophin mutation into human embryonic stem cells via CRISPR/Cas9. While dystrophin is expressed in healthy hPSC, its deficiency in DMD hPSC lines induces the release of reactive oxygen species (ROS) through dysregulated activity of all three isoforms of nitric oxide synthase (further abrev. as, NOS). NOS-induced ROS release leads to DNA damage and genomic instability in DMD hPSC. We were able to reduce both the ROS release as well as DNA damage to the level of wild-type hPSC by inhibiting NOS activity.
Department of Biology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Department of Clinical Genetics University hospital Brno 613 00 Brno Czech Republic
PhyMedExp INSERM University of Montpellier CNRS 342 95 Montpellier CEDEX 5 France
Zobrazit více v PubMed
Mah J.K., Korngut L., Dykeman J., Day L., Pringsheim T., Jette N. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. 2014;24:482–491. doi: 10.1016/j.nmd.2014.03.008. PubMed DOI
Emery A.E.H. The muscular dystrophies. Lancet. 2002;359:687–695. doi: 10.1016/S0140-6736(02)07815-7. PubMed DOI
Tidball J.G., Albrecht D.E., Lokensgard B.E., Spencer M.J. Apoptosis precedes necrosis of dystrophin-deficient muscle. (Pt 6)J. Cell Sci. 1995;108:2197–2204. PubMed
Mikhaĭlov V.M., Komarov S.A., Nilova V.K., Shteĭn G.I., Baranov V.S. Ultrastructural and morphometrical analysis of apoptosis stages in cardiomyocytes of MDX mice. Tsitologiia. 2001;43:729–737. PubMed
Finsterer J., Stöllberger C. The heart in human dystrophinopathies. Cardiology. 2003;99:1–19. doi: 10.1159/000068446. PubMed DOI
Chenard A.A., Becane H.M., Tertrain F., de Kermadec J.M., Weiss Y.A. Ventricular arrhythmia in Duchenne muscular dystrophy: Prevalence, significance and prognosis. Neuromuscul. Disord. 1993;3:201–206. doi: 10.1016/0960-8966(93)90060-W. PubMed DOI
Himmrich E., Popov S., Liebrich A., Rosocha S., Zellerhoff C., Nowak B., Przibille O. Hidden intracardiac conduction disturbances and their spontaneous course in patients with progressive muscular dystrophy. Z. Kardiol. 2000;89:592–598. doi: 10.1007/s003920070208. PubMed DOI
Manzur A.Y., Kinali M., Muntoni F. Update on the management of Duchenne muscular dystrophy. Arch. Dis. Child. 2008;93:986–990. doi: 10.1136/adc.2007.118141. PubMed DOI
Fayssoil A., Nardi O., Orlikowski D., Annane D. Cardiomyopathy in Duchenne muscular dystrophy: Pathogenesis and therapeutics. Heart Fail. Rev. 2010;15:103–107. doi: 10.1007/s10741-009-9156-8. PubMed DOI
Heslop L., Morgan J.E., Partridge T.A. Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. Pt 12J. Cell Sci. 2000;113:2299–2308. PubMed
Webster C., Blau H.M. Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: Implications for cell and gene therapy. Somat. Cell Mol. Genet. 1990;16:557–565. doi: 10.1007/BF01233096. PubMed DOI
Blake D.J., Weir A., Newey S.E., Davies K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 2002;82:291–329. doi: 10.1152/physrev.00028.2001. PubMed DOI
Clarac F., Massion J., Smith A.M. Duchenne, Charcot and Babinski, three neurologists of La Salpetrière Hospital, and their contribution to concepts of the central organization of motor synergy. J. Physiol. Paris. 2009;103:361–376. doi: 10.1016/j.jphysparis.2009.09.001. PubMed DOI
Danialou G., Comtois A.S., Dudley R., Karpati G., Vincent G., Des Rosiers C., Petrof B.J. Dystrophin-deficient cardiomyocytes are abnormally vulnerable to mechanical stress-induced contractile failure and injury. FASEB J. 2001;15:1655–1657. doi: 10.1096/fj.01-0030fje. PubMed DOI
Gao Q., McNally E.M. The Dystrophin Complex: Structure, function and implications for therapy. Compr. Physiol. 2015;5:1223–1239. PubMed PMC
Massouridès E., Polentes J., Mangeot P.-E., Mournetas V., Nectoux J., Deburgrave N., Nusbaum P., Leturcq F., Popplewell L., Dickson G., et al. Dp412e: A novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells. Skelet Muscle. 2015;5:40. doi: 10.1186/s13395-015-0062-6. PubMed DOI PMC
Dick E., Kalra S., Anderson D., George V., Ritso M., Laval S.H., Barresi R., Aartsma-Rus A., Lochmüller H., Denning C. Exon skipping and gene transfer restore dystrophin expression in human induced pluripotent stem cells-cardiomyocytes harboring DMD mutations. Stem Cells Dev. 2013;22:2714–2724. doi: 10.1089/scd.2013.0135. PubMed DOI PMC
Janke A., Upadhaya R., Snow W.M., Anderson J.E. A new look at cytoskeletal NOS-1 and β-dystroglycan changes in developing muscle and brain in control and mdx dystrophic mice. Dev. Dyn. 2013;242:1369–1381. doi: 10.1002/dvdy.24031. PubMed DOI
Ramachandran J., Schneider J.S., Crassous P.-A., Zheng R., Gonzalez J.P., Xie L.-H., Beuve A., Fraidenraich D., Peluffo R.D. Nitric Oxide Signaling Pathway in Duchenne Muscular Dystrophy Mice: Upregulation of L-arginine Transporters. Biochem. J. 2013;449:133–142. doi: 10.1042/BJ20120787. PubMed DOI PMC
Li D., Yue Y., Lai Y., Hakim C.H., Duan D. Nitrosative stress elicited by nNOSμ delocalization inhibits muscle force in dystrophin-null mice. J. Pathol. 2011;223:88–98. doi: 10.1002/path.2799. PubMed DOI PMC
Chang W.J., Iannaccone S.T., Lau K.S., Masters B.S., McCabe T.J., McMillan K., Padre R.C., Spencer M.J., Tidball J.G., Stull J.T. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc. Natl. Acad. Sci. USA. 1996;93:9142–9147. doi: 10.1073/pnas.93.17.9142. PubMed DOI PMC
Heinzel B., John M., Klatt P., Böhme E., Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem. J. 1992;281:627–630. doi: 10.1042/bj2810627. PubMed DOI PMC
Xia Y., Zweier J.L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc. Natl. Acad. Sci. USA. 1997;94:6954–6958. doi: 10.1073/pnas.94.13.6954. PubMed DOI PMC
Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 1990;87:1620–1624. doi: 10.1073/pnas.87.4.1620. PubMed DOI PMC
Mosqueira M., Zeiger U., Förderer M., Brinkmeier H., Fink R.H.A. Cardiac and respiratory dysfunction in Duchenne muscular dystrophy and the role of second messengers. Med. Res. Rev. 2013;33:1174–1213. doi: 10.1002/med.21279. PubMed DOI
Rybalka E., Timpani C.A., Cooke M.B., Williams A.D., Hayes A. Defects in mitochondrial ATP synthesis in dystrophin-deficient mdx skeletal muscles may be caused by complex I insufficiency. PLoS ONE. 2014;9:e115763. doi: 10.1371/journal.pone.0115763. PubMed DOI PMC
Kyrychenko S., Kyrychenko V., Badr M.A., Ikeda Y., Sadoshima J., Shirokova N. Pivotal role of miR-448 in the development of ROS-induced cardiomyopathy. Cardiovasc. Res. 2015;108:324–334. doi: 10.1093/cvr/cvv238. PubMed DOI PMC
Henríquez-Olguín C., Altamirano F., Valladares D., López J.R., Allen P.D., Jaimovich E. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells. Biochim. Biophys. Acta. 2015;1852:1410–1419. doi: 10.1016/j.bbadis.2015.03.012. PubMed DOI PMC
Kozakowska M., Pietraszek-Gremplewicz K., Jozkowicz A., Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: Focus on antioxidant enzymes. J. Muscle Res. Cell. Motil. 2015;36:377–393. doi: 10.1007/s10974-015-9438-9. PubMed DOI PMC
Sciorati C., Staszewsky L., Zambelli V., Russo I., Salio M., Novelli D., Di Grigoli G., Moresco R.M., Clementi E., Latini R. Ibuprofen plus isosorbide dinitrate treatment in the mdx mice ameliorates dystrophic heart structure. Pharmacol. Res. 2013;73:35–43. doi: 10.1016/j.phrs.2013.04.009. PubMed DOI
Straub V., Rafael J.A., Chamberlain J.S., Campbell K.P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 1997;139:375–385. doi: 10.1083/jcb.139.2.375. PubMed DOI PMC
Farini A., Meregalli M., Belicchi M., Battistelli M., Parolini D., D’Antona G., Gavina M., Ottoboni L., Constantin G., Bottinelli R., et al. T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the scid/mdx mouse. J. Pathol. 2007;213:229–238. doi: 10.1002/path.2213. PubMed DOI
Morrison J., Lu Q.L., Pastoret C., Partridge T., Bou-Gharios G. T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab. Investig. 2000;80:881–891. doi: 10.1038/labinvest.3780092. PubMed DOI
Messina S., Vita G.L., Aguennouz M., Sframeli M., Romeo S., Rodolico C., Vita G. Activation of NF-kB pathway in Duchenne muscular dystrophy: Relation to age. Acta Myol. 2011;30:16–23. PubMed PMC
Lu A., Poddar M., Tang Y., Proto J.D., Sohn J., Mu X., Oyster N., Wang B., Huard J. Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin-/- mice. Hum. Mol. Genet. 2014;23:4786–4800. doi: 10.1093/hmg/ddu194. PubMed DOI PMC
Dumont N.A., Wang Y.X., von Maltzahn J., Pasut A., Bentzinger C.F., Brun C.E., Rudnicki M.A. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat. Med. 2015;21:1455–1463. doi: 10.1038/nm.3990. PubMed DOI PMC
Inomata K., Aoto T., Binh N.T., Okamoto N., Tanimura S., Wakayama T., Iseki S., Hara E., Masunaga T., Shimizu H., et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137:1088–1099. doi: 10.1016/j.cell.2009.03.037. PubMed DOI
Rossi D.J., Bryder D., Seita J., Nussenzweig A., Hoeijmakers J., Weissman I.L. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447:725–729. doi: 10.1038/nature05862. PubMed DOI
Rübe C.E., Fricke A., Widmann T.A., Fürst T., Madry H., Pfreundschuh M., Rübe C. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS ONE. 2011;6:e17487. doi: 10.1371/journal.pone.0017487. PubMed DOI PMC
Miyagoe-Suzuki Y., Nishiyama T., Nakamura M., Narita A., Takemura F., Masuda S., Minami N., Murayama K., Komaki H., Goto Y.-I., et al. Induction of Pluripotent Stem Cells from a Manifesting Carrier of Duchenne Muscular Dystrophy and Characterization of Their X-Inactivation Status. Stem Cells Int. 2017;2017:7906843. doi: 10.1155/2017/7906843. PubMed DOI PMC
Choi I.Y., Lim H., Estrellas K., Mula J., Cohen T.V., Zhang Y., Donnelly C.J., Richard J.-P., Kim Y.J., Kim H., et al. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model. Cell Rep. 2016;15:2301–2312. doi: 10.1016/j.celrep.2016.05.016. PubMed DOI
Hashimoto A., Naito A.T., Lee J.-K., Kitazume-Taneike R., Ito M., Yamaguchi T., Nakata R., Sumida T., Okada K., Nakagawa A., et al. Generation of Induced Pluripotent Stem Cells From Patients With Duchenne Muscular Dystrophy and Their Induction to Cardiomyocytes. Int. Heart J. 2016;57:112–117. doi: 10.1536/ihj.15-376. PubMed DOI
Spaltro G., Vigorelli V., Casalnuovo F., Spinelli P., Castiglioni E., Rovina D., Paganini S., Di Segni M., Nigro P., Gervasini C., et al. Derivation of the Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line lacking DMD exons 49 and 50 (CCMi001DMD-A-3, ∆49, ∆50) Stem Cell Res. 2017;25:128–131. doi: 10.1016/j.scr.2017.10.018. PubMed DOI
McGreevy J.W., Hakim C.H., McIntosh M.A., Duan D. Animal models of Duchenne muscular dystrophy: From basic mechanisms to gene therapy. Dis. Model Mech. 2015;8:195–213. doi: 10.1242/dmm.018424. PubMed DOI PMC
International Stem Cell Initiative. Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P.W., Beighton G., Bello P.A., Benvenisty N., Berry L.S., et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007;25:803–816. PubMed
Krutá M., Šeneklová M., Raška J., Salykin A., Zerzánková L., Pešl M., Bártová E., Franek M., Baumeisterová A., Košková S., et al. Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts. Stem Cells Dev. 2014;23:2443–2454. doi: 10.1089/scd.2013.0611. PubMed DOI PMC
Armstrong L., Tilgner K., Saretzki G., Atkinson S.P., Stojkovic M., Moreno R., Przyborski S., Lako M. Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells. 2010;28:661–673. doi: 10.1002/stem.307. PubMed DOI
Šimara P., Tesařová L., Padourová S., Koutná I. Generation of human induced pluripotent stem cells using genome integrating or non-integrating methods. Folia Biol. (Praha) 2014;60(Suppl. 1):85–89. PubMed
Dvorak P., Dvorakova D., Koskova S., Vodinska M., Najvirtova M., Krekac D., Hampl A. Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells. 2005;23:1200–1211. doi: 10.1634/stemcells.2004-0303. PubMed DOI
Pesl M., Acimovic I., Pribyl J., Hezova R., Vilotic A., Fauconnier J., Vrbsky J., Kruzliak P., Skladal P., Kara T., et al. Forced aggregation and defined factors allow highly uniform-sized embryoid bodies and functional cardiomyocytes from human embryonic and induced pluripotent stem cells. Heart Vessels. 2014;29:834–846. doi: 10.1007/s00380-013-0436-9. PubMed DOI
Eiselleova L., Peterkova I., Neradil J., Slaninova I., Hampl A., Dvorak P. Comparative study of mouse and human feeder cells for human embryonic stem cells. Int. J. Dev. Biol. 2008;52:353–363. doi: 10.1387/ijdb.082590le. PubMed DOI
Park I.-H., Lerou P.H., Zhao R., Huo H., Daley G.Q. Generation of human-induced pluripotent stem cells. Nat. Protoc. 2008;3:1180–1186. doi: 10.1038/nprot.2008.92. PubMed DOI
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Boeva V., Popova T., Bleakley K., Chiche P., Cappo J., Schleiermacher G., Janoueix-Lerosey I., Delattre O., Barillot E. Control-FREEC: A tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics. 2012;28:423–425. doi: 10.1093/bioinformatics/btr670. PubMed DOI PMC
Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. [(accessed on 27 June 2018)]; Available online: https://www.nature.com/articles/nmeth.2089. PubMed PMC
Kunova M., Matulka K., Eiselleova L., Salykin A., Kubikova I., Kyrylenko S., Hampl A., Dvorak P. Adaptation to robust monolayer expansion produces human pluripotent stem cells with improved viability. Stem Cells Transl. Med. 2013;2:246–254. doi: 10.5966/sctm.2012-0081. PubMed DOI PMC
Post-hoc Power Calculator. [(accessed on 22 August 2018)]; Available online: http://clincalc.com/Stats/Power.aspx.
Lin B., Li Y., Han L., Kaplan A.D., Ao Y., Kalra S., Bett G.C.L., Rasmusson R.L., Denning C., Yang L. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis. Model Mech. 2015;8:457–466. doi: 10.1242/dmm.019505. PubMed DOI PMC
Guan X., Mack D.L., Moreno C.M., Strande J.L., Mathieu J., Shi Y., Markert C.D., Wang Z., Liu G., Lawlor M.W., et al. Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery. Stem Cell Res. 2014;12:467–480. doi: 10.1016/j.scr.2013.12.004. PubMed DOI PMC
Acimovic I., Vilotic A., Pesl M., Lacampagne A., Dvorak P., Rotrekl V., Meli A.C. Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools. [(accessed on 18 June 2018)]; Available online: https://www.hindawi.com/journals/bmri/2014/512831/ PubMed PMC
Hockemeyer D., Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016;18:573–586. doi: 10.1016/j.stem.2016.04.013. PubMed DOI PMC
Narsinh K.H., Sun N., Sanchez-Freire V., Lee A.S., Almeida P., Hu S., Jan T., Wilson K.D., Leong D., Rosenberg J., et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J. Clin. Investig. 2011;121:1217–1221. doi: 10.1172/JCI44635. PubMed DOI PMC
Cassano M., Berardi E., Crippa S., Toelen J., Barthelemy I., Micheletti R., Chuah M., Vandendriessche T., Debyser Z., Blot S., et al. Alteration of cardiac progenitor cell potency in GRMD dogs. Cell Transplant. 2012;21:1945–1967. doi: 10.3727/096368912X638919. PubMed DOI
Mu X., Tang Y., Lu A., Takayama K., Usas A., Wang B., Weiss K., Huard J. The role of Notch signaling in muscle progenitor cell depletion and the rapid onset of histopathology in muscular dystrophy. Hum. Mol. Genet. 2015;24:2923–2937. doi: 10.1093/hmg/ddv055. PubMed DOI PMC
Small C., Ramroop J., Otazo M., Huang L.H., Saleque S., Govind S. An Unexpected Link Between Notch Signaling and ROS in Restricting the Differentiation of Hematopoietic Progenitors in Drosophila. Genetics. 2014;197:471–483. doi: 10.1534/genetics.113.159210. PubMed DOI PMC
Wang J., Sun Q., Morita Y., Jiang H., Gross A., Lechel A., Hildner K., Guachalla L.M., Gompf A., Hartmann D., et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell. 2012;148:1001–1014. doi: 10.1016/j.cell.2012.01.040. PubMed DOI
Mandal P.K., Rossi D.J. DNA-damage-induced differentiation in hematopoietic stem cells. Cell. 2012;148:847–848. doi: 10.1016/j.cell.2012.02.011. PubMed DOI
Williams I.A., Allen D.G. Intracellular calcium handling in ventricular myocytes from mdx mice. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H846–H855. doi: 10.1152/ajpheart.00688.2006. PubMed DOI
Whitehead N.P., Pham C., Gervasio O.L., Allen D.G. N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J. Physiol. (Lond.) 2008;586:2003–2014. doi: 10.1113/jphysiol.2007.148338. PubMed DOI PMC
Fauconnier J., Thireau J., Reiken S., Cassan C., Richard S., Matecki S., Marks A.R., Lacampagne A. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA. 2010;107:1559–1564. doi: 10.1073/pnas.0908540107. PubMed DOI PMC
Messina S., Altavilla D., Aguennouz M., Seminara P., Minutoli L., Monici M.C., Bitto A., Mazzeo A., Marini H., Squadrito F., et al. Lipid peroxidation inhibition blunts nuclear factor-kappaB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am. J. Pathol. 2006;168:918–926. doi: 10.2353/ajpath.2006.050673. PubMed DOI PMC
Davidson S.M., Duchen M.R. Effects of NO on mitochondrial function in cardiomyocytes: Pathophysiological relevance. Cardiovasc. Res. 2006;71:10–21. doi: 10.1016/j.cardiores.2006.01.019. PubMed DOI
Hsie A.W., Recio L., Katz D.S., Lee C.Q., Wagner M., Schenley R.L. Evidence for reactive oxygen species inducing mutations in mammalian cells. Proc. Natl. Acad. Sci. USA. 1986;83:9616–9620. doi: 10.1073/pnas.83.24.9616. PubMed DOI PMC
Sohal R.S., Mockett R.J., Orr W.C. Mechanisms of aging: An appraisal of the oxidative stress hypothesis. Free Radic. Biol. Med. 2002;33:575–586. doi: 10.1016/S0891-5849(02)00886-9. PubMed DOI
Douki T., Rivière J., Cadet J. DNA tandem lesions containing 8-oxo-7,8-dihydroguanine and formamido residues arise from intramolecular addition of thymine peroxyl radical to guanine. Chem. Res. Toxicol. 2002;15:445–454. doi: 10.1021/tx0155909. PubMed DOI
Krutá M., Bálek L., Hejnová R., Dobšáková Z., Eiselleová L., Matulka K., Bárta T., Fojtík P., Fajkus J., Hampl A., et al. Decrease in abundance of apurinic/apyrimidinic endonuclease causes failure of base excision repair in culture-adapted human embryonic stem cells. Stem Cells. 2013;31:693–702. doi: 10.1002/stem.1312. PubMed DOI
Wang D., Kreutzer D.A., Essigmann J.M. Mutagenicity and repair of oxidative DNA damage: Insights from studies using defined lesions. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1998;400:99–115. doi: 10.1016/S0027-5107(98)00066-9. PubMed DOI
Wang Y., Marino-Enriquez A., Bennett R.R., Zhu M., Shen Y., Eilers G., Lee J.-C., Henze J., Fletcher B.S., Gu Z., et al. Dystrophin Is a Tumor Suppressor in Human Cancers with Myogenic Programs. Nat. Genet. 2014;46:601–606. doi: 10.1038/ng.2974. PubMed DOI PMC
Schmidt W.M., Uddin M.H., Dysek S., Moser-Thier K., Pirker C., Höger H., Ambros I.M., Ambros P.F., Berger W., Bittner R.E. DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies. PLoS Genet. 2011;7:e1002042. doi: 10.1371/journal.pgen.1002042. PubMed DOI PMC
Burkhalter M.D., Rudolph K.L., Sperka T. Genome instability of ageing stem cells—Induction and defence mechanisms. Ageing Res. Rev. 2015;23:29–36. doi: 10.1016/j.arr.2015.01.004. PubMed DOI PMC
Kyrychenko V., Poláková E., Janíček R., Shirokova N. Mitochondrial dysfunctions during progression of dystrophic cardiomyopathy. Cell Calcium. 2015;58:186–195. doi: 10.1016/j.ceca.2015.04.006. PubMed DOI PMC
Brenman J.E., Chao D.S., Gee S.H., McGee A.W., Craven S.E., Santillano D.R., Wu Z., Huang F., Xia H., Peters M.F., et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell. 1996;84:757–767. doi: 10.1016/S0092-8674(00)81053-3. PubMed DOI
Feron O., Belhassen L., Kobzik L., Smith T.W., Kelly R.A., Michel T. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J. Biol. Chem. 1996;271:22810–22814. doi: 10.1074/jbc.271.37.22810. PubMed DOI
Dudley R.W.R., Danialou G., Govindaraju K., Lands L., Eidelman D.E., Petrof B.J. Sarcolemmal damage in dystrophin deficiency is modulated by synergistic interactions between mechanical and oxidative/nitrosative stresses. Am. J. Pathol. 2006;168:1276–1287. doi: 10.2353/ajpath.2006.050683. PubMed DOI PMC
Kinugawa S., Huang H., Wang Z., Kaminski P.M., Wolin M.S., Hintze T.H. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circ. Res. 2005;96:355–362. doi: 10.1161/01.RES.0000155331.09458.A7. PubMed DOI
Kyrychenko S., Poláková E., Kang C., Pocsai K., Ullrich N.D., Niggli E., Shirokova N. Hierarchical accumulation of RyR post-translational modifications drives disease progression in dystrophic cardiomyopathy. Cardiovasc. Res. 2013;97:666–675. doi: 10.1093/cvr/cvs425. PubMed DOI PMC
Villalta S.A., Nguyen H.X., Deng B., Gotoh T., Tidball J.G. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet. 2009;18:482–496. doi: 10.1093/hmg/ddn376. PubMed DOI PMC
Altun A., Temiz T.K., Balcı E., Polat Z.A., Turan M. Effects of tyrosine kinase inhibitor E7080 and eNOS inhibitor L-NIO on colorectal cancer alone and in combination. Chin. J. Cancer Res. 2013;25:572–584. PubMed PMC
Díaz-Troya S., Najib S., Sánchez-Margalet V. eNOS, nNOS, cGMP and protein kinase G mediate the inhibitory effect of pancreastatin, a chromogranin A-derived peptide, on growth and proliferation of hepatoma cells. Regul. Pept. 2005;125:41–46. doi: 10.1016/j.regpep.2004.07.031. PubMed DOI
Ouameur A.A., Tajmir-Riahi H.-A. Structural Analysis of DNA Interactions with Biogenic Polyamines and Cobalt(III)hexamine Studied by Fourier Transform Infrared and Capillary Electrophoresis. J. Biol. Chem. 2004;279:42041–42054. doi: 10.1074/jbc.M406053200. PubMed DOI
Lai Y., Thomas G.D., Yue Y., Yang H.T., Li D., Long C., Judge L., Bostick B., Chamberlain J.S., Terjung R.L., et al. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J. Clin. Investig. 2009;119:624–635. doi: 10.1172/JCI36612. PubMed DOI PMC
Gratton J.-P., Bernatchez P., Sessa W.C. Caveolae and caveolins in the cardiovascular system. Circ. Res. 2004;94:1408–1417. doi: 10.1161/01.RES.0000129178.56294.17. PubMed DOI
Michel J.B., Feron O., Sacks D., Michel T. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J. Biol. Chem. 1997;272:15583–15586. doi: 10.1074/jbc.272.25.15583. PubMed DOI
Schilling K., Opitz N., Wiesenthal A., Oess S., Tikkanen R., Müller-Esterl W., Icking A. Translocation of endothelial nitric-oxide synthase involves a ternary complex with caveolin-1 and NOSTRIN. Mol. Biol. Cell. 2006;17:3870–3880. doi: 10.1091/mbc.e05-08-0709. PubMed DOI PMC
Timpani C.A., Trewin A.J., Stojanovska V., Robinson A., Goodman C.A., Nurgali K., Betik A.C., Stepto N., Hayes A., McConell G.K., et al. Attempting to Compensate for Reduced Neuronal Nitric Oxide Synthase Protein with Nitrate Supplementation Cannot Overcome Metabolic Dysfunction but Rather Has Detrimental Effects in Dystrophin-Deficient mdx Muscle. Neurotherapeutics. 2017;14:429–446. doi: 10.1007/s13311-016-0494-7. PubMed DOI PMC
Wang H., Bierie B., Li A.G., Pathania S., Toomire K., Dimitrov S.D., Liu B., Gelman R., Giobbie-Hurder A., Feunteun J., et al. BRCA1/FANCD2/BRG1-Driven DNA Repair Stabilizes the Differentiation State of Human Mammary Epithelial Cells. Mol. Cell. 2016;63:277–292. doi: 10.1016/j.molcel.2016.05.038. PubMed DOI PMC
Pilzecker B., Buoninfante O.A., van den Berk P., Lancini C., Song J.-Y., Citterio E., Jacobs H. DNA damage tolerance in hematopoietic stem and progenitor cells in mice. Proc. Natl. Acad. Sci. USA. 2017;114:E6875–E6883. doi: 10.1073/pnas.1706508114. PubMed DOI PMC
Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart
DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate in vitro Human Cardiac Pathophysiology