Cardiovascular progenitor cells and tissue plasticity are reduced in a myocardium affected by Becker muscular dystrophy
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32138751
PubMed Central
PMC7057505
DOI
10.1186/s13023-019-1257-4
PII: 10.1186/s13023-019-1257-4
Knihovny.cz E-resources
- Keywords
- Becker muscular dystrophy, C-kit, Cardiomyopathy, Cardiovascular progenitor cells, Dystrophin, Heart failure,
- MeSH
- Cardiomyopathy, Dilated * MeSH
- Muscular Dystrophy, Duchenne * MeSH
- Dystrophin MeSH
- Stem Cells MeSH
- Humans MeSH
- Myocardium MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dystrophin MeSH
UNLABELLED: We describe the association of Becker muscular dystrophy (BMD) derived heart failure with the impairment of tissue homeostasis and remodeling capabilities of the affected heart tissue. We report that BMD heart failure is associated with a significantly decreased number of cardiovascular progenitor cells, reduced cardiac fibroblast migration, and ex vivo survival. BACKGROUND: Becker muscular dystrophy belongs to a class of genetically inherited dystrophin deficiencies. It affects male patients and results in progressive skeletal muscle degeneration and dilated cardiomyopathy leading to heart failure. It is a relatively mild form of dystrophin deficiency, which allows patients to be on a heart transplant list. In this unique situation, the explanted heart is a rare opportunity to study the degenerative process of dystrophin-deficient cardiac tissue. Heart tissue was excised, dissociated, and analyzed. The fractional content of c-kit+/CD45- cardiovascular progenitor cells (CVPCs) and cardiac fibroblast migration were compared to control samples of atrial tissue. Control tissue was obtained from the hearts of healthy organ donor's during heart transplantation procedures. RESULTS: We report significantly decreased CVPCs (c-kit+/CD45-) throughout the heart tissue of a BMD patient, and reduced numbers of phase-bright cells presenting c-kit positivity in the dystrophin-deficient cultured explants. In addition, ex vivo CVPCs survival and cardiac fibroblasts migration were significantly reduced, suggesting reduced homeostatic support and irreversible tissue remodeling. CONCLUSIONS: Our findings associate genetically derived heart failure in a dystrophin-deficient patient with decreased c-kit+/CD45- CVPCs and their resilience, possibly hinting at a lack of cardioprotective capability and/or reduced homeostatic support. This also correlates with reduced plasticity of the explanted cardiac tissue, related to the process of irreversible remodeling in the BMD patient's heart.
Center for Cardiovascular Surgery and Transplantation Pekarska 53 Brno 65691 Czech Republic
Central European Institute of Technology Nanobiotechnology Kamenice 5 Brno 62500 Czech Republic
Department of Biology Faculty of Medicine Masaryk University Kamenice 5 Brno 62500 Czech Republic
Department of Cardiology University Hospital Brno Jihlavska 20 Brno 62500 Czech Republic
See more in PubMed
Ho R, Nguyen M-L, Mather P. Cardiomyopathy in Becker muscular dystrophy: overview. World J Cardiol. 2016;8:356. doi: 10.4330/wjc.v8.i6.356. PubMed DOI PMC
Yilmaz A, Gdynia H-J, Baccouche H, Mahrholdt H, Meinhardt G, Basso C, et al. Cardiac involvement in patients with Becker muscular dystrophy: new diagnostic and pathophysiological insights by a CMR approach. J Cardiovasc Magn Reson. 2008;10:50. doi: 10.1186/1532-429X-10-50. PubMed DOI PMC
Panovský R, Pešl M, Holeček T, Máchal J, Feitová V, Mrázová L, et al. Cardiac profile of the Czech population of Duchenne muscular dystrophy patients: a cardiovascular magnetic resonance study with T1 mapping. Orphanet J Rare Dis. 2019;14:10. doi: 10.1186/s13023-018-0986-0. PubMed DOI PMC
Finsterer J, Stöllberger C. Cardiac involvement in Becker muscular dystrophy. Can J Cardiol. 2008;24:786–792. doi: 10.1016/S0828-282X(08)70686-X. PubMed DOI PMC
Papa AA, D’Ambrosio P, Petillo R, Palladino A, Politano L. Heart transplantation in patients with dystrophinopathic cardiomyopathy: review of the literature and personal series. Intractable Rare Dis Res. 2017;6:95–101. doi: 10.5582/irdr.2017.01024. PubMed DOI PMC
Darras BT, Miller DT, Urion DK. Dystrophinopathies. Seattle: University of Washington; 1993.
Furtado MB, Nim HT, Boyd SE, Rosenthal NA. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development. 2016;143:387–397. doi: 10.1242/dev.120576. PubMed DOI
Furtado MB, Costa MW, Pranoto EA, Ekaterina S, Pinto Alexander R, Lam Nicholas T, et al. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res. 2014;114:1422–1434. doi: 10.1161/CIRCRESAHA.114.302530. PubMed DOI PMC
Lajiness JD, Conway SJ. The dynamic role of cardiac fibroblasts in development and disease. J Cardiovasc Transl Res. 2012;5:739–748. doi: 10.1007/s12265-012-9394-3. PubMed DOI PMC
Talman V, Kivelä R. Cardiomyocyte—endothelial cell interactions in cardiac remodeling and regeneration. Front Cardiovasc Med. 2018;5. 10.3389/fcvm.2018.00101. PubMed PMC
Mathison M, Rosengart TK. Heart regeneration: the endothelial cell comes first. J Thorac Cardiovasc Surg. 2018;155:1128–1129. doi: 10.1016/j.jtcvs.2017.09.106. PubMed DOI PMC
Hui Z, Lui Kathy O, Bin Z. Endocardial cell plasticity in cardiac development, diseases and regeneration. Circ Res. 2018;122:774–789. doi: 10.1161/CIRCRESAHA.117.312136. PubMed DOI
Gray G, Toor I, Castellan R, Crisan M, Meloni M. Resident cells of the myocardium: more than spectators in cardiac injury, repair and regeneration. Curr Opin Physiol. 2018;1:46–51. doi: 10.1016/j.cophys.2017.08.001. PubMed DOI PMC
Leong YY, Ng WH, Ellison-Hughes GM, Tan JJ. Cardiac stem cells for myocardial regeneration: they are not alone. Front Cardiovasc Med. 2017;4. 10.3389/fcvm.2017.00047. PubMed PMC
Zhou B, Wu SM. Reassessment of c-kit in cardiac cells: a complex interplay between expression, fate, and function. Circ Res. 2018;123:9–11. doi: 10.1161/CIRCRESAHA.118.313215. PubMed DOI PMC
Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res. 2016;118:95–107. doi: 10.1161/CIRCRESAHA.115.305373. PubMed DOI PMC
Finan A, Demion M, Sicard P, Guisiano M, Bideaux P, Monceaux K, et al. Prolonged elevated levels of c-kit+ progenitor cells after a myocardial infarction by beta 2 adrenergic receptor priming. J Cell Physiol. 2019;234:18283–18296. doi: 10.1002/jcp.28461. PubMed DOI
Hong KU, Guo Y, Li Q-H, Cao P, Al-Maqtari T, Vajravelu BN, et al. c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS ONE. 2014;9:e96725. doi: 10.1371/journal.pone.0096725. PubMed DOI PMC
Davis DR. Cardiac stem cells in the post-Anversa era. Eur Heart J. 2019;40:1039–1041. doi: 10.1093/eurheartj/ehz098. PubMed DOI
Viklicky O, Fronek J, Trunecka P, Pirk J, Lischke R. Organ transplantation in the Czech Republic. Transplantation. 2017;101:2259. doi: 10.1097/TP.0000000000001871. PubMed DOI
Fajkusová L, Lukáš Z, Tvrdíková M, Kuhrová V, Hájek J, Fajkus J. Novel dystrophin mutations revealed by analysis of dystrophin mRNA: alternative splicing suppresses the phenotypic effect of a nonsense mutation. Neuromuscul Disord. 2001;11:133–138. doi: 10.1016/S0960-8966(00)00169-3. PubMed DOI
Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–921. doi: 10.1161/01.RES.0000147315.71699.51. PubMed DOI
Matuszczak S, Czapla J, Jarosz-Biej M, Wiśniewska E, Cichoń T, Smolarczyk R, et al. Characteristic of c-kit+ progenitor cells in explanted human hearts. Clin Res Cardiol Off J Ger Card Soc. 2014;103:711–718. doi: 10.1007/s00392-014-0705-3. PubMed DOI PMC
Lombardi R, Chen SN, Ruggiero A, Gurha P, Czernuszewicz GZ, Willerson JT, et al. Cardiac fibro-adipocyte progenitors express desmosome proteins and preferentially differentiate to adipocytes upon deletion of the desmoplakin gene. Circ Res. 2016;119:41–54. doi: 10.1161/CIRCRESAHA.115.308136. PubMed DOI PMC
Kazakov A, Laufs U. Healthy and unhealthy cardiac progenitor cells modify the pathogenesis of myocardial diseases. Circ Res. 2016;119:10–12. doi: 10.1161/CIRCRESAHA.116.309012. PubMed DOI
Jelinkova Sarka, Fojtik Petr, Kohutova Aneta, Vilotic Aleksandra, Marková Lenka, Pesl Martin, Jurakova Tereza, Kruta Miriama, Vrbsky Jan, Gaillyova Renata, Valášková Iveta, Frák Ivan, Lacampagne Alain, Forte Giancarlo, Dvorak Petr, Meli Albano C., Rotrekl Vladimir. Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells. 2019;8(1):53. doi: 10.3390/cells8010053. PubMed DOI PMC
Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med. 2015;21:1455–1463. doi: 10.1038/nm.3990. PubMed DOI PMC
Matuszczak S, Czapla J, Jarosz-Biej M, Winiewska E, Cichoń T, et al. Characteristic of c-Kit + progenitor cells in explanted human hearts. Clin Res Cardiol. 2014;103(9):711–718. doi: 10.1007/s00392-014-0705-3. PubMed DOI PMC
Saheera S, Nair RR. Accelerated decline in cardiac stem cell efficiency in spontaneously hypertensive rat compared to normotensive Wistar rat. PLoS One. 2017;12:e0189129. doi: 10.1371/journal.pone.0189129. PubMed DOI PMC
Rimmelé P, Bigarella CL, Liang R, Izac B, Dieguez-Gonzalez R, Barbet G, et al. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Rep. 2014;3:44–59. doi: 10.1016/j.stemcr.2014.04.015. PubMed DOI PMC
Cassano M, Berardi E, Crippa S, Toelen J, Barthelemy I, Micheletti R, et al. Alteration of cardiac progenitor cell potency in GRMD dogs. Cell Transplant. 2012;21:1945–1967. doi: 10.3727/096368912X638919. PubMed DOI
Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P. Understanding the process of fibrosis in Duchenne muscular dystrophy. Biomed Res Int. 2014;2014:965631. doi: 10.1155/2014/965631. PubMed DOI PMC
Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011;1:21. doi: 10.1186/2044-5040-1-21. PubMed DOI PMC
Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 2012;5:15. doi: 10.1186/1755-1536-5-15. PubMed DOI PMC
Dostal D, Glaser S, Baudino TA. Cardiac fibroblast physiology and pathology. In: Terjung R, editor. Comprehensive physiology. Hoboken: John Wiley & Sons, Inc.; 2015. pp. 887–909. PubMed
Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 2018;68–69:490–506. doi: 10.1016/j.matbio.2018.01.013. PubMed DOI
Santiago J-J, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn. 2010;239:1573–1584. doi: 10.1002/dvdy.22280. PubMed DOI
Skrbic B, Engebretsen KVT, Strand ME, Lunde IG, Herum KM, Marstein HS, et al. Lack of collagen VIII reduces fibrosis and promotes early mortality and cardiac dilatation in pressure overload in mice. Cardiovasc Res. 2015;106:32–42. doi: 10.1093/cvr/cvv041. PubMed DOI
Hoit BD, Ohio C. Left atrial size and function role in prognosis. J Am Coll Cardiol. 2014;63:493–505. doi: 10.1016/j.jacc.2013.10.055. PubMed DOI
Treloar KK, Simpson MJ. Sensitivity of edge detection methods for quantifying cell migration assays. PLoS One. 2013;8:e67389. doi: 10.1371/journal.pone.0067389. PubMed DOI PMC
Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart
DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate in vitro Human Cardiac Pathophysiology