Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart

. 2021 May 10 ; 22 (9) : . [epub] 20210510

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34068508

Grantová podpora
20225 Association Française contre les Myopathies

Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.

Zobrazit více v PubMed

Mah J.K., Korngut L., Dykeman J., Day L., Pringsheim T., Jette N. A Systematic Review and Meta-Analysis on the Epidemiology of Duchenne and Becker Muscular Dystrophy. Neuromuscul. Disord. 2014;24:482–491. doi: 10.1016/j.nmd.2014.03.008. PubMed DOI

Nigro G., Comi L.I., Politano L., Bain R.J. The Incidence and Evolution of Cardiomyopathy in Duchenne Muscular Dystrophy. Int. J. Cardiol. 1990;26:271–277. doi: 10.1016/0167-5273(90)90082-G. PubMed DOI

Clarac F., Massion J., Smith A.M. Duchenne, Charcot and Babinski, Three Neurologists of La Salpetrière Hospital, and Their Contribution to Concepts of the Central Organization of Motor Synergy. J. Physiol. 2009;103:361–376. doi: 10.1016/j.jphysparis.2009.09.001. PubMed DOI

Amedro P., Vincenti M., De La Villeon G., Lavastre K., Barrea C., Guillaumont S., Bredy C., Gamon L., Meli A.C., Cazorla O., et al. Speckle-Tracking Echocardiography in Children with Duchenne Muscular Dystrophy: A Prospective Multicenter Controlled Cross-Sectional Study. J. Am. Soc. Echocardiogr. 2019;32:412–422. doi: 10.1016/j.echo.2018.10.017. PubMed DOI

Manzur A.Y., Kinali M., Muntoni F. Update on the Management of Duchenne Muscular Dystrophy. Arch. Dis. Child. 2008;93:986–990. doi: 10.1136/adc.2007.118141. PubMed DOI

Fayssoil A., Nardi O., Orlikowski D., Annane D. Cardiomyopathy in Duchenne Muscular Dystrophy: Pathogenesis and Therapeutics. Heart Fail. Rev. 2010;15:103–107. doi: 10.1007/s10741-009-9156-8. PubMed DOI

Straub V., Rafael J.A., Chamberlain J.S., Campbell K.P. Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption. J. Cell Biol. 1997;139:375–385. doi: 10.1083/jcb.139.2.375. PubMed DOI PMC

Niggli E., Shirokova N. A Guide to Sparkology: The Taxonomy of Elementary Cellular Ca2+ Signaling Events. Cell Calcium. 2007;42:379–387. doi: 10.1016/j.ceca.2007.02.010. PubMed DOI

Williams I.A., Allen D.G. Intracellular Calcium Handling in Ventricular Myocytes from Mdx Mice. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H846–H855. doi: 10.1152/ajpheart.00688.2006. PubMed DOI

Jung C., Martins A.S., Niggli E., Shirokova N. Dystrophic Cardiomyopathy: Amplification of Cellular Damage by Ca2+ Signalling and Reactive Oxygen Species-Generating Pathways. Cardiovasc. Res. 2008;77:766–773. doi: 10.1093/cvr/cvm089. PubMed DOI

Poláková E., Shirokova N. Abnormal Sodium Handling and Mitochondrial Metabolism in Cardiac Dystrophy. Biophys. J. 2011;100:81a. doi: 10.1016/j.bpj.2010.12.650. DOI

Bellinger A.M., Reiken S., Carlson C., Mongillo M., Liu X., Rothman L., Matecki S., Lacampagne A., Marks A.R. Hypernitrosylated Ryanodine Receptor Calcium Release Channels Are Leaky in Dystrophic Muscle. Nat. Med. 2009;15:325–330. doi: 10.1038/nm.1916. PubMed DOI PMC

Fauconnier J., Thireau J., Reiken S., Cassan C., Richard S., Matecki S., Marks A.R., Lacampagne A. Leaky RyR2 Trigger Ventricular Arrhythmias in Duchenne Muscular Dystrophy. Proc. Natl. Acad. Sci. USA. 2010;107:1559–1564. doi: 10.1073/pnas.0908540107. PubMed DOI PMC

Koenig X., Dysek S., Kimbacher S., Mike A.K., Cervenka R., Lukacs P., Nagl K., Dang X.B., Todt H., Bittner R.E., et al. Voltage-Gated Ion Channel Dysfunction Precedes Cardiomyopathy Development in the Dystrophic Heart. PLoS ONE. 2011;6:e20300. doi: 10.1371/journal.pone.0020300. PubMed DOI PMC

Cassano M., Berardi E., Crippa S., Toelen J., Barthelemy I., Micheletti R., Chuah M., Vandendriessche T., Debyser Z., Blot S., et al. Alteration of Cardiac Progenitor Cell Potency in GRMD Dogs. Cell Transplant. 2012;21:1945–1967. doi: 10.3727/096368912X638919. PubMed DOI

Dumont N.A., Wang Y.X., von Maltzahn J., Pasut A., Bentzinger C.F., Brun C.E., Rudnicki M.A. Dystrophin Expression in Muscle Stem Cells Regulates Their Polarity and Asymmetric Division. Nat. Med. 2015;21:1455–1463. doi: 10.1038/nm.3990. PubMed DOI PMC

Sohn J., Lu A., Tang Y., Wang B., Huard J. Activation of Non-Myogenic Mesenchymal Stem Cells during the Disease Progression in Dystrophic Dystrophin/Utrophin Knockout Mice. Hum. Mol. Genet. 2015;24:3814–3829. doi: 10.1093/hmg/ddv125. PubMed DOI PMC

Colussi C., Gurtner A., Rosati J., Illi B., Ragone G., Piaggio G., Moggio M., Lamperti C., D’Angelo G., Clementi E., et al. Nitric Oxide Deficiency Determines Global Chromatin Changes in Duchenne Muscular Dystrophy. FASEB J. 2009;23:2131–2141. doi: 10.1096/fj.08-115618. PubMed DOI

Saccone V., Consalvi S., Giordani L., Mozzetta C., Barozzi I., Sandoná M., Ryan T., Rojas-Muñoz A., Madaro L., Fasanaro P., et al. HDAC-Regulated MyomiRs Control BAF60 Variant Exchange and Direct the Functional Phenotype of Fibro-Adipogenic Progenitors in Dystrophic Muscles. Genes Dev. 2014;28:841–857. doi: 10.1101/gad.234468.113. PubMed DOI PMC

Lu A., Poddar M., Tang Y., Proto J.D., Sohn J., Mu X., Oyster N., Wang B., Huard J. Rapid Depletion of Muscle Progenitor Cells in Dystrophic Mdx/Utrophin-/- Mice. Hum. Mol. Genet. 2014;23:4786–4800. doi: 10.1093/hmg/ddu194. PubMed DOI PMC

Van Erp C., Loch D., Laws N., Trebbin A., Hoey A.J. Timeline of Cardiac Dystrophy in 3-18-Month-Old MDX Mice. Muscle Nerve. 2010;42:504–513. doi: 10.1002/mus.21716. PubMed DOI

Nitahara-Kasahara Y., Hayashita-Kinoh H., Chiyo T., Nishiyama A., Okada H., Takeda S., Okada T. Dystrophic Mdx Mice Develop Severe Cardiac and Respiratory Dysfunction Following Genetic Ablation of the Anti-Inflammatory Cytokine IL-10. Hum. Mol. Genet. 2014;23:3990–4000. doi: 10.1093/hmg/ddu113. PubMed DOI

Furtado M.B., Nim H.T., Boyd S.E., Rosenthal N.A. View from the Heart: Cardiac Fibroblasts in Development, Scarring and Regeneration. Development. 2016;143:387–397. doi: 10.1242/dev.120576. PubMed DOI

Furtado Milena B., Costa Mauro W., Pranoto Edward A., Salimova E., Pinto A.R., Lam N.T., Park A., Snider P., Chandran A., Harvey R.P., et al. Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair. Circ. Res. 2014;114:1422–1434. doi: 10.1161/CIRCRESAHA.114.302530. PubMed DOI PMC

Lajiness J.D., Conway S.J. The Dynamic Role of Cardiac Fibroblasts in Development and Disease. J. Cardiovasc. Transl. Res. 2012;5:739–748. doi: 10.1007/s12265-012-9394-3. PubMed DOI PMC

Talman V., Kivelä R. Cardiomyocyte—Endothelial Cell Interactions in Cardiac Remodeling and Regeneration. Front. Cardiovasc. Med. 2018;5:101. doi: 10.3389/fcvm.2018.00101. PubMed DOI PMC

Mathison M., Rosengart T.K. Heart Regeneration: The Endothelial Cell Comes First. J. Thorac. Cardiovasc. Surg. 2018;155:1128–1129. doi: 10.1016/j.jtcvs.2017.09.106. PubMed DOI PMC

Zhang H., Lui K.O., Zhou B. Endocardial Cell Plasticity in Cardiac Development, Diseases and Regeneration. Circ. Res. 2018;122:774–789. doi: 10.1161/CIRCRESAHA.117.312136. PubMed DOI

Gray G., Toor I., Castellan R., Crisan M., Meloni M. Resident Cells of the Myocardium: More than Spectators in Cardiac Injury, Repair and Regeneration. Curr. Opin. Physiol. 2018;1:46–51. doi: 10.1016/j.cophys.2017.08.001. PubMed DOI PMC

Leong Y.Y., Ng W.H., Ellison-Hughes G.M., Tan J.J. Cardiac Stem Cells for Myocardial Regeneration: They Are Not Alone. Front. Cardiovasc. Med. 2017;4:47. doi: 10.3389/fcvm.2017.00047. PubMed DOI PMC

Hodgkinson C.P., Bareja A., Gomez J.A., Dzau V.J. Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ. Res. 2016;118:95–107. doi: 10.1161/CIRCRESAHA.115.305373. PubMed DOI PMC

Maxwell J.T., Trac D., Shen M., Brown M.E., Davis M.E., Chao M.S., Supapannachart K.J., Zaladonis C.A., Baker E., Li M.L., et al. Electrical Stimulation of Pediatric Cardiac-Derived c-Kit+ Progenitor Cells Improves Retention and Cardiac Function in Right Ventricular Heart Failure. Stem Cells. 2019;37:1528–1541. doi: 10.1002/stem.3088. PubMed DOI PMC

Zhou B., Wu S.M. Reassessment of C-Kit in Cardiac Cells: A Complex Interplay Between Expression, Fate, and Function. Circ. Res. 2018;123:9–11. doi: 10.1161/CIRCRESAHA.118.313215. PubMed DOI PMC

Finan A., Demion M., Sicard P., Guisiano M., Bideaux P., Monceaux K., Thireau J., Richard S. Prolonged Elevated Levels of C-Kit+ Progenitor Cells after a Myocardial Infarction by Beta 2 Adrenergic Receptor Priming. J. Cell. Physiol. 2019;234:18283–18296. doi: 10.1002/jcp.28461. PubMed DOI

Hong K.U., Guo Y., Li Q.-H., Cao P., Al-Maqtari T., Vajravelu B.N., Du J., Book M.J., Zhu X., Nong Y., et al. C-Kit+ Cardiac Stem Cells Alleviate Post-Myocardial Infarction Left Ventricular Dysfunction Despite Poor Engraftment and Negligible Retention in the Recipient Heart. PLoS ONE. 2014;9:e96725. doi: 10.1371/journal.pone.0096725. PubMed DOI PMC

Davis D.R. Cardiac Stem Cells in the Post-Anversa Era. Eur. Heart J. 2019;40:1039–1041. doi: 10.1093/eurheartj/ehz098. PubMed DOI

Pesl M., Jelinkova S., Caluori G., Holicka M., Krejci J., Nemec P., Kohutova A., Zampachova V., Dvorak P., Rotrekl V. Cardiovascular Progenitor Cells and Tissue Plasticity Are Reduced in a Myocardium Affected by Becker Muscular Dystrophy. Orphanet J. Rare Dis. 2020;15:65. doi: 10.1186/s13023-019-1257-4. PubMed DOI PMC

Meyers T.A., Townsend D. Early Right Ventricular Fibrosis and Reduction in Biventricular Cardiac Reserve in the Dystrophin-Deficient Mdx Heart. Am. J. Physiol. Heart Circ. Physiol. 2015;308:H303–H315. doi: 10.1152/ajpheart.00485.2014. PubMed DOI PMC

Chisholm K.M., Merker J.D., Gotlib J.R., Gitana G., Lefterova M., Zehnder J.L., George T.I., Arber D.A., Ohgami R.S. Mast Cells in Systemic Mastocytosis Have Distinctly Brighter CD45 Expression by Flow Cytometry. Am. J. Clin. Pathol. 2015;143:527–534. doi: 10.1309/AJCPZ3J4GEEYIRRA. PubMed DOI

Shiba N., Miyazaki D., Yoshizawa T., Fukushima K., Shiba Y., Inaba Y., Imamura M., Takeda S., Koike K., Nakamura A. Differential Roles of MMP-9 in Early and Late Stages of Dystrophic Muscles in a Mouse Model of Duchenne Muscular Dystrophy. Biochim. Biophys. Acta. 2015;1852:2170–2182. doi: 10.1016/j.bbadis.2015.07.008. PubMed DOI

De Oliveira F., Flavia D.O., Quintana H.T., Bortolin J.A., Gomes O.A., Liberti E.A., Ribeiro D.A. Cyclooxygenase-2 Expression in Skeletal Muscle of Knockout Mice Suffering Duchenne Muscular Dystrophy. Histochem. Cell Biol. 2013;139:685–689. doi: 10.1007/s00418-012-1065-6. PubMed DOI

Jelinkova S., Fojtik P., Kohutova A., Vilotic A., Marková L., Pesl M., Jurakova T., Kruta M., Vrbsky J., Gaillyova R., et al. Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells. 2019;8:53. doi: 10.3390/cells8010053. PubMed DOI PMC

Van Berlo J.H., Kanisicak O., Maillet M., Vagnozzi R.J., Karch J., Lin S.-C.J., Middleton R.C., Marbán E., Molkentin J.D. C-Kit+ Cells Minimally Contribute Cardiomyocytes to the Heart. Nature. 2014;509:337–341. doi: 10.1038/nature13309. PubMed DOI PMC

Sultana N., Zhang L., Yan J., Chen J., Cai W., Razzaque S., Jeong D., Sheng W., Bu L., Xu M., et al. Resident C-Kit(+) Cells in the Heart Are Not Cardiac Stem Cells. Nat. Commun. 2015;6:8701. doi: 10.1038/ncomms9701. PubMed DOI PMC

Chimenti I., Smith R.R., Li T.-S., Gerstenblith G., Messina E., Giacomello A., Marbán E. Relative Roles of Direct Regeneration versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted into Infarcted Mice. Circ. Res. 2010;106:971–980. doi: 10.1161/CIRCRESAHA.109.210682. PubMed DOI PMC

Li T.-S., Cheng K., Lee S.-T., Matsushita S., Davis D., Malliaras K., Zhang Y., Matsushita N., Smith R.R., Marbán E. Cardiospheres Recapitulate a Niche-Like Microenvironment Rich in Stemness and Cell-Matrix Interactions, Rationalizing Their Enhanced Functional Potency for Myocardial Repair. Stem Cells. 2010;28:2088–2098. doi: 10.1002/stem.532. PubMed DOI PMC

Tseliou E., Pollan S., Malliaras K., Terrovitis J., Sun B., Galang G., Marbán L., Luthringer D., Marbán E. Allogeneic Cardiospheres Safely Boost Cardiac Function and Attenuate Adverse Remodeling After Myocardial Infarction in Immunologically Mismatched Rat Strains. J. Am. Coll. Cardiol. 2013;61:1108–1119. doi: 10.1016/j.jacc.2012.10.052. PubMed DOI

Rogers R.G., Fournier M., Sanchez L., Ibrahim A.G., Aminzadeh M.A., Lewis M.I., Marbán E. Disease-Modifying Bioactivity of Intravenous Cardiosphere-Derived Cells and Exosomes in Mdx Mice. JCI Insight. 2019;4 doi: 10.1172/jci.insight.125754. PubMed DOI PMC

Aminzadeh M.A., Rogers R.G., Fournier M., Tobin R.E., Guan X., Childers M.K., Andres A.M., Taylor D.J., Ibrahim A., Ding X., et al. Exosome-Mediated Benefits of Cell Therapy in Mouse and Human Models of Duchenne Muscular Dystrophy. Stem Cell Rep. 2018;10:942–955. doi: 10.1016/j.stemcr.2018.01.023. PubMed DOI PMC

Kubo H., Jaleel N., Kumarapeli A., Berretta R.M., Bratinov G., Shan X., Wang H., Houser S.R., Margulies K.B. Increased Cardiac Myocyte Progenitors in Failing Human Hearts. Circulation. 2008;118:649–657. doi: 10.1161/CIRCULATIONAHA.107.761031. PubMed DOI PMC

Matuszczak S., Czapla J., Jarosz-Biej M., Wiśniewska E., Cichoń T., Smolarczyk R., Kobusińska M., Gajda K., Wilczek P., Sliwka J., et al. Characteristic of C-Kit+ Progenitor Cells in Explanted Human Hearts. Clin. Res. Cardiol. 2014;103:711–718. doi: 10.1007/s00392-014-0705-3. PubMed DOI PMC

Leite C.F., Lopes C.S., Alves A.C., Fuzaro C.S.C., Silva M.V., de Oliveira L.F., Garcia L.P., Farnesi T.S., de Cuba M.B., Rocha L.B., et al. Endogenous Resident C-Kit Cardiac Stem Cells Increase in Mice with an Exercise-Induced, Physiologically Hypertrophied Heart. Stem Cell Res. 2015;15:151–164. doi: 10.1016/j.scr.2015.05.011. PubMed DOI

Tidball J.G., Albrecht D.E., Lokensgard B.E., Spencer M.J. Apoptosis Precedes Necrosis of Dystrophin-Deficient Muscle. J. Cell. Sci. 1995;108:2197–2204. doi: 10.1242/jcs.108.6.2197. PubMed DOI

Mikhaĭlov V.M., Komarov S.A., Nilova V.K., Shteĭn G.I., Baranov V.S. Ultrastructural and morphometrical analysis of apoptosis stages in cardiomyocytes of MDX mice. Tsitologiia. 2001;43:729–737. PubMed

Bridges L.R. The Association of Cardiac Muscle Necrosis and Inflammation with the Degenerative and Persistent Myopathy of MDX Mice. J. Neurol. Sci. 1986;72:147–157. doi: 10.1016/0022-510X(86)90003-1. PubMed DOI

Megeney L.A., Kablar B., Perry R.L.S., Ying C., May L., Rudnicki M.A. Severe Cardiomyopathy in Mice Lacking Dystrophin and MyoD. Proc. Natl. Acad. Sci. USA. 1999;96:220–225. doi: 10.1073/pnas.96.1.220. PubMed DOI PMC

Rubi L., Todt H., Kubista H., Koenig X., Hilber K. Calcium Current Properties in Dystrophin-deficient Ventricular Cardiomyocytes from Aged Mdx Mice. Physiol. Rep. 2018;6:e13567. doi: 10.14814/phy2.13567. PubMed DOI PMC

Jelinkova S., Vilotic A., Pribyl J., Aimond F., Salykin A., Acimovic I., Pesl M., Caluori G., Klimovic S., Urban T., et al. DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate in Vitro Human Cardiac Pathophysiology. Front. Bioeng. Biotechnol. 2020;8:535. doi: 10.3389/fbioe.2020.00535. PubMed DOI PMC

Messina S., Altavilla D., Aguennouz M., Seminara P., Minutoli L., Monici M.C., Bitto A., Mazzeo A., Marini H., Squadrito F., et al. Lipid Peroxidation Inhibition Blunts Nuclear Factor-KappaB Activation, Reduces Skeletal Muscle Degeneration, and Enhances Muscle Function in Mdx Mice. Am. J. Pathol. 2006;168:918–926. doi: 10.2353/ajpath.2006.050673. PubMed DOI PMC

Radley H.G., Davies M.J., Grounds M.D. Reduced Muscle Necrosis and Long-Term Benefits in Dystrophic Mdx Mice after CV1q (Blockade of TNF) Treatment. Neuromuscul. Disord. 2008;18:227–238. doi: 10.1016/j.nmd.2007.11.002. PubMed DOI

Delfín D.A., Zang K.E., Schill K.E., Patel N.T., Janssen P.M.L., Raman S.V., Rafael-Fortney J.A. Cardiomyopathy in the Dystrophin/Utrophin-Deficient Mouse Model of Severe Muscular Dystrophy Is Characterized by Dysregulation of Matrix Metalloproteinases. Neuromuscul. Disord. 2012;22:1006–1014. doi: 10.1016/j.nmd.2012.05.002. PubMed DOI PMC

Dahiya S., Givvimani S., Bhatnagar S., Qipshidze N., Tyagi S.C., Kumar A. Osteopontin-Stimulated Expression of Matrix Metalloproteinase-9 Causes Cardiomyopathy in the Mdx Model of Duchenne Muscular Dystrophy. J. Immunol. 2011;187:2723–2731. doi: 10.4049/jimmunol.1101342. PubMed DOI PMC

Pioner J.M., Guan X., Klaiman J.M., Racca A.W., Pabon L., Muskheli V., Macadangdang J., Ferrantini C., Hoopmann M.R., Moritz R.L., et al. Absence of Full-Length Dystrophin Impairs Normal Maturation and Contraction of Cardiomyocytes Derived from Human-Induced Pluripotent Stem Cells. Cardiovasc. Res. 2020;116:368–382. doi: 10.1093/cvr/cvz109. PubMed DOI PMC

Khouzami L., Bourin M.-C., Christov C., Damy T., Escoubet B., Caramelle P., Perier M., Wahbi K., Meune C., Pavoine C., et al. Delayed Cardiomyopathy in Dystrophin Deficient Mdx Mice Relies on Intrinsic Glutathione Resource. Am. J. Pathol. 2010;177:1356–1364. doi: 10.2353/ajpath.2010.090479. PubMed DOI PMC

Siemionow M., Malik M., Langa P., Cwykiel J., Brodowska S., Heydemann A. Cardiac Protection after Systemic Transplant of Dystrophin Expressing Chimeric (DEC) Cells to the Mdx Mouse Model of Duchenne Muscular Dystrophy. Stem Cell Rev. Rep. 2019;15:827–841. doi: 10.1007/s12015-019-09916-0. PubMed DOI PMC

Au C.G., Butler T.L., Sherwood M.C., Egan J.R., North K.N., Winlaw D.S. Increased Connective Tissue Growth Factor Associated with Cardiac Fibrosis in the Mdx Mouse Model of Dystrophic Cardiomyopathy. Int. J. Exp. Pathol. 2011;92:57–65. doi: 10.1111/j.1365-2613.2010.00750.x. PubMed DOI PMC

Fayssoil A., Renault G., Guerchet N., Marchiol-Fournigault C., Fougerousse F., Richard I. Cardiac Characterization of Mdx Mice Using High-Resolution Doppler Echocardiography. J. Ultrasound Med. 2013;32:757–761. doi: 10.7863/jum.2013.32.5.757. PubMed DOI

Stuckey D.J., Carr C.A., Camelliti P., Tyler D.J., Davies K.E., Clarke K. In Vivo MRI Characterization of Progressive Cardiac Dysfunction in the Mdx Mouse Model of Muscular Dystrophy. PLoS ONE. 2012;7:e28569. doi: 10.1371/journal.pone.0028569. PubMed DOI PMC

Spurney C., Yu Q., Nagaraju K. Speckle Tracking Analysis of the Left Ventricular Anterior Wall Shows Significantly Decreased Relative Radial Strain Patterns in Dystrophin Deficient Mice after 9 Months of Age. PLoS Curr. 2011;3:RRN1273. doi: 10.1371/currents.RRN1273. PubMed DOI PMC

Taqatqa A., Bokowski J., Al-Kubaisi M., Khalil A., Miranda C., Alaksham H., Fughhi I., Kenny D., Diab K.A. The Use of Speckle Tracking Echocardiography for Early Detection of Myocardial Dysfunction in Patients with Duchenne Muscular Dystrophy. Pediatr. Cardiol. 2016;37:1422–1428. doi: 10.1007/s00246-016-1451-2. PubMed DOI

Soslow J.H., Xu M., Slaughter J.C., Stanley M., Crum K., Markham L.W., Parra D.A. Evaluation of Echocardiographic Measures of Left Ventricular Function in Patients with Duchenne Muscular Dystrophy: Assessment of Reproducibility and Comparison to Cardiac Magnetic Resonance Imaging. J. Am. Soc. Echocardiogr. 2016;29:983–991. doi: 10.1016/j.echo.2016.07.001. PubMed DOI PMC

Mertens L., Ganame J., Claus P., Goemans N., Thijs D., Eyskens B., Van Laere D., Bijnens B., D’hooge J., Sutherland G.R., et al. Early Regional Myocardial Dysfunction in Young Patients with Duchenne Muscular Dystrophy. J. Am. Soc. Echocardiogr. 2008;21:1049–1054. doi: 10.1016/j.echo.2008.03.001. PubMed DOI

Sahoo S., Losordo D.W. Exosomes and Cardiac Repair after Myocardial Infarction. Circ. Res. 2014;114:333–344. doi: 10.1161/CIRCRESAHA.114.300639. PubMed DOI

Kishore R., Khan M. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair. Circ. Res. 2016;118:330–343. doi: 10.1161/CIRCRESAHA.115.307654. PubMed DOI PMC

Singla D.K. Stem Cells and Exosomes in Cardiac Repair. Curr. Opin. Pharmacol. 2016;27:19–23. doi: 10.1016/j.coph.2016.01.003. PubMed DOI

Suzuki E., Fujita D., Takahashi M., Oba S., Nishimatsu H. Stem Cell-Derived Exosomes as a Therapeutic Tool for Cardiovascular Disease. World J. Stem Cells. 2016;8:297–305. doi: 10.4252/wjsc.v8.i9.297. PubMed DOI PMC

Saha P., Sharma S., Korutla L., Datla S.R., Shoja-Taheri F., Mishra R., Bigham G.E., Sarkar M., Morales D., Bittle G., et al. Circulating Exosomes Derived from Transplanted Progenitor Cells Aid the Functional Recovery of Ischemic Myocardium. Sci. Transl. Med. 2019;11 doi: 10.1126/scitranslmed.aau1168. PubMed DOI PMC

Fang S., Wei J., Pentinmikko N., Leinonen H., Salven P. Generation of Functional Blood Vessels from a Single C-Kit+ Adult Vascular Endothelial Stem Cell. PLoS Biol. 2012;10:e1001407. doi: 10.1371/journal.pbio.1001407. PubMed DOI PMC

Hosoda T. C-Kit-Positive Cardiac Stem Cells and Myocardial Regeneration. Am. J. Cardiovasc. Dis. 2012;2:58–67. PubMed PMC

Wang Y.X., Feige P., Brun C.E., Hekmatnejad B., Dumont N.A., Renaud J.-M., Faulkes S., Guindon D.E., Rudnicki M.A. EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions. Cell Stem Cell. 2019;24:419–432. doi: 10.1016/j.stem.2019.01.002. PubMed DOI PMC

Hsie A.W., Recio L., Katz D.S., Lee C.Q., Wagner M., Schenley R.L. Evidence for Reactive Oxygen Species Inducing Mutations in Mammalian Cells. Proc. Natl. Acad. Sci. USA. 1986;83:9616–9620. doi: 10.1073/pnas.83.24.9616. PubMed DOI PMC

Douki T., Rivière J., Cadet J. DNA Tandem Lesions Containing 8-Oxo-7,8-Dihydroguanine and Formamido Residues Arise from Intramolecular Addition of Thymine Peroxyl Radical to Guanine. Chem. Res. Toxicol. 2002;15:445–454. doi: 10.1021/tx0155909. PubMed DOI

Khairallah M., Khairallah R., Young M.E., Dyck J.R.B., Petrof B.J., Des Rosiers C. Metabolic and Signaling Alterations in Dystrophin-Deficient Hearts Precede Overt Cardiomyopathy. J. Mol. Cell. Cardiol. 2007;43:119–129. doi: 10.1016/j.yjmcc.2007.05.015. PubMed DOI

El Haddad M., Jean E., Turki A., Hugon G., Vernus B., Bonnieu A., Passerieux E., Hamade A., Mercier J., Laoudj-Chenivesse D., et al. Glutathione Peroxidase 3, a New Retinoid Target Gene, Is Crucial for Human Skeletal Muscle Precursor Cell Survival. J. Cell. Sci. 2012;125:6147–6156. doi: 10.1242/jcs.115220. PubMed DOI

Hsiao L.-C., Perbellini F., Gomes R.S.M., Tan J.J., Vieira S., Faggian G., Clarke K., Carr C.A. Murine Cardiosphere-Derived Cells Are Impaired by Age but Not by Cardiac Dystrophic Dysfunction. Stem Cells Dev. 2014;23:1027–1036. doi: 10.1089/scd.2013.0388. PubMed DOI PMC

Saito Y., Takahashi K. Selenoprotein P: Its Structure and Functions. J. Health Sci. 2000;46:409–413. doi: 10.1248/jhs.46.409. DOI

Takahashi K., Avissar N., Whitin J., Cohen H. Purification and Characterization of Human Plasma Glutathione Peroxidase: A Selenoglycoprotein Distinct from the Known Cellular Enzyme. Arch. Biochem. Biophys. 1987;256:677–686. doi: 10.1016/0003-9861(87)90624-2. PubMed DOI

Yarimizu J., Nakamura H., Yodoi J., Takahashi K. Efficiency of Selenocysteine Incorporation in Human Thioredoxin Reductase. Antioxid. Redox Signal. 2000;2:643–651. doi: 10.1089/ars.2000.2.4-643. PubMed DOI

Williams I.A., Allen D.G. The Role of Reactive Oxygen Species in the Hearts of Dystrophin-Deficient Mdx Mice. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1969–H1977. doi: 10.1152/ajpheart.00489.2007. PubMed DOI

Dick E., Kalra S., Anderson D., George V., Ritso M., Laval S.H., Barresi R., Aartsma-Rus A., Lochmüller H., Denning C. Exon Skipping and Gene Transfer Restore Dystrophin Expression in Human Induced Pluripotent Stem Cells-Cardiomyocytes Harboring DMD Mutations. Stem Cells Dev. 2013;22:2714–2724. doi: 10.1089/scd.2013.0135. PubMed DOI PMC

Inomata K., Aoto T., Binh N.T., Okamoto N., Tanimura S., Wakayama T., Iseki S., Hara E., Masunaga T., Shimizu H., et al. Genotoxic Stress Abrogates Renewal of Melanocyte Stem Cells by Triggering Their Differentiation. Cell. 2009;137:1088–1099. doi: 10.1016/j.cell.2009.03.037. PubMed DOI

Rossi D.J., Bryder D., Seita J., Nussenzweig A., Hoeijmakers J., Weissman I.L. Deficiencies in DNA Damage Repair Limit the Function of Haematopoietic Stem Cells with Age. Nature. 2007;447:725–729. doi: 10.1038/nature05862. PubMed DOI

Pilzecker B., Buoninfante O.A., van den Berk P., Lancini C., Song J.-Y., Citterio E., Jacobs H. DNA Damage Tolerance in Hematopoietic Stem and Progenitor Cells in Mice. Proc. Natl. Acad. Sci. USA. 2017;114:E6875–E6883. doi: 10.1073/pnas.1706508114. PubMed DOI PMC

Mandal P.K., Rossi D.J. DNA-Damage-Induced Differentiation in Hematopoietic Stem Cells. Cell. 2012;148:847–848. doi: 10.1016/j.cell.2012.02.011. PubMed DOI

Burkhalter M.D., Rudolph K.L., Sperka T. Genome Instability of Ageing Stem Cells--Induction and Defence Mechanisms. Ageing Res. Rev. 2015;23:29–36. doi: 10.1016/j.arr.2015.01.004. PubMed DOI PMC

Amancio G.D.C.S., Grabe-Guimarães A., Haikel D., Moreau J., Barcellos N.M.S., Lacampagne A., Matecki S., Cazorla O. Effect of Pyridostigmine on in Vivo and in Vitro Respiratory Muscle of Mdx Mice. Respir. Physiol. Neurobiol. 2017;243:107–114. doi: 10.1016/j.resp.2017.06.001. PubMed DOI

Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017;7:1–7. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC

Broadley K.J. The Langendorff Heart Preparation—Reappraisal of Its Role as a Research and Teaching Model for Coronary Vasoactive Drugs. J. Pharmacol. Methods. 1979;2:143–156. doi: 10.1016/0160-5402(79)90038-X. DOI

He J.-Q., Vu D.M., Hunt G., Chugh A., Bhatnagar A., Bolli R. Human Cardiac Stem Cells Isolated from Atrial Appendages Stably Express C-Kit. PLoS ONE. 2011;6:e27719. doi: 10.1371/journal.pone.0027719. PubMed DOI PMC

Chazalette D., Hnia K., Rivier F., Hugon G., Mornet D. Alpha7B Integrin Changes in Mdx Mouse Muscles after L-Arginine Administration. FEBS Lett. 2005;579:1079–1084. doi: 10.1016/j.febslet.2004.12.081. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...