Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20225
Association Française contre les Myopathies
PubMed
34068508
PubMed Central
PMC8125982
DOI
10.3390/ijms22095025
PII: ijms22095025
Knihovny.cz E-zdroje
- Klíčová slova
- c-kit, cardiovascular progenitors, dilated cardiomyopathy, duchenne muscular dystrophy, genomic instability, mdx mouse,
- MeSH
- dilatační kardiomyopatie genetika metabolismus patologie MeSH
- Duchennova muskulární dystrofie genetika metabolismus patologie MeSH
- dystrofin nedostatek genetika MeSH
- kardiomyocyty metabolismus patologie MeSH
- kardiovaskulární systém metabolismus patologie MeSH
- kmenové buňky metabolismus patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myokard metabolismus patologie MeSH
- myši inbrední mdx genetika MeSH
- myši MeSH
- poškození DNA genetika MeSH
- protoonkogenní proteiny c-kit genetika MeSH
- regulace genové exprese genetika MeSH
- stárnutí genetika patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dystrofin MeSH
- protoonkogenní proteiny c-kit MeSH
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
Department of Biology Faculty of Medicine Masaryk University Kamenice 5 A3 62500 Brno Czech Republic
ICRC St Anne's University Hospital Pekařská 53 65691 Brno Czech Republic
PhyMedExp University of Montpellier INSERM CNRS 34295 Montpellier France
Zobrazit více v PubMed
Mah J.K., Korngut L., Dykeman J., Day L., Pringsheim T., Jette N. A Systematic Review and Meta-Analysis on the Epidemiology of Duchenne and Becker Muscular Dystrophy. Neuromuscul. Disord. 2014;24:482–491. doi: 10.1016/j.nmd.2014.03.008. PubMed DOI
Nigro G., Comi L.I., Politano L., Bain R.J. The Incidence and Evolution of Cardiomyopathy in Duchenne Muscular Dystrophy. Int. J. Cardiol. 1990;26:271–277. doi: 10.1016/0167-5273(90)90082-G. PubMed DOI
Clarac F., Massion J., Smith A.M. Duchenne, Charcot and Babinski, Three Neurologists of La Salpetrière Hospital, and Their Contribution to Concepts of the Central Organization of Motor Synergy. J. Physiol. 2009;103:361–376. doi: 10.1016/j.jphysparis.2009.09.001. PubMed DOI
Amedro P., Vincenti M., De La Villeon G., Lavastre K., Barrea C., Guillaumont S., Bredy C., Gamon L., Meli A.C., Cazorla O., et al. Speckle-Tracking Echocardiography in Children with Duchenne Muscular Dystrophy: A Prospective Multicenter Controlled Cross-Sectional Study. J. Am. Soc. Echocardiogr. 2019;32:412–422. doi: 10.1016/j.echo.2018.10.017. PubMed DOI
Manzur A.Y., Kinali M., Muntoni F. Update on the Management of Duchenne Muscular Dystrophy. Arch. Dis. Child. 2008;93:986–990. doi: 10.1136/adc.2007.118141. PubMed DOI
Fayssoil A., Nardi O., Orlikowski D., Annane D. Cardiomyopathy in Duchenne Muscular Dystrophy: Pathogenesis and Therapeutics. Heart Fail. Rev. 2010;15:103–107. doi: 10.1007/s10741-009-9156-8. PubMed DOI
Straub V., Rafael J.A., Chamberlain J.S., Campbell K.P. Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption. J. Cell Biol. 1997;139:375–385. doi: 10.1083/jcb.139.2.375. PubMed DOI PMC
Niggli E., Shirokova N. A Guide to Sparkology: The Taxonomy of Elementary Cellular Ca2+ Signaling Events. Cell Calcium. 2007;42:379–387. doi: 10.1016/j.ceca.2007.02.010. PubMed DOI
Williams I.A., Allen D.G. Intracellular Calcium Handling in Ventricular Myocytes from Mdx Mice. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H846–H855. doi: 10.1152/ajpheart.00688.2006. PubMed DOI
Jung C., Martins A.S., Niggli E., Shirokova N. Dystrophic Cardiomyopathy: Amplification of Cellular Damage by Ca2+ Signalling and Reactive Oxygen Species-Generating Pathways. Cardiovasc. Res. 2008;77:766–773. doi: 10.1093/cvr/cvm089. PubMed DOI
Poláková E., Shirokova N. Abnormal Sodium Handling and Mitochondrial Metabolism in Cardiac Dystrophy. Biophys. J. 2011;100:81a. doi: 10.1016/j.bpj.2010.12.650. DOI
Bellinger A.M., Reiken S., Carlson C., Mongillo M., Liu X., Rothman L., Matecki S., Lacampagne A., Marks A.R. Hypernitrosylated Ryanodine Receptor Calcium Release Channels Are Leaky in Dystrophic Muscle. Nat. Med. 2009;15:325–330. doi: 10.1038/nm.1916. PubMed DOI PMC
Fauconnier J., Thireau J., Reiken S., Cassan C., Richard S., Matecki S., Marks A.R., Lacampagne A. Leaky RyR2 Trigger Ventricular Arrhythmias in Duchenne Muscular Dystrophy. Proc. Natl. Acad. Sci. USA. 2010;107:1559–1564. doi: 10.1073/pnas.0908540107. PubMed DOI PMC
Koenig X., Dysek S., Kimbacher S., Mike A.K., Cervenka R., Lukacs P., Nagl K., Dang X.B., Todt H., Bittner R.E., et al. Voltage-Gated Ion Channel Dysfunction Precedes Cardiomyopathy Development in the Dystrophic Heart. PLoS ONE. 2011;6:e20300. doi: 10.1371/journal.pone.0020300. PubMed DOI PMC
Cassano M., Berardi E., Crippa S., Toelen J., Barthelemy I., Micheletti R., Chuah M., Vandendriessche T., Debyser Z., Blot S., et al. Alteration of Cardiac Progenitor Cell Potency in GRMD Dogs. Cell Transplant. 2012;21:1945–1967. doi: 10.3727/096368912X638919. PubMed DOI
Dumont N.A., Wang Y.X., von Maltzahn J., Pasut A., Bentzinger C.F., Brun C.E., Rudnicki M.A. Dystrophin Expression in Muscle Stem Cells Regulates Their Polarity and Asymmetric Division. Nat. Med. 2015;21:1455–1463. doi: 10.1038/nm.3990. PubMed DOI PMC
Sohn J., Lu A., Tang Y., Wang B., Huard J. Activation of Non-Myogenic Mesenchymal Stem Cells during the Disease Progression in Dystrophic Dystrophin/Utrophin Knockout Mice. Hum. Mol. Genet. 2015;24:3814–3829. doi: 10.1093/hmg/ddv125. PubMed DOI PMC
Colussi C., Gurtner A., Rosati J., Illi B., Ragone G., Piaggio G., Moggio M., Lamperti C., D’Angelo G., Clementi E., et al. Nitric Oxide Deficiency Determines Global Chromatin Changes in Duchenne Muscular Dystrophy. FASEB J. 2009;23:2131–2141. doi: 10.1096/fj.08-115618. PubMed DOI
Saccone V., Consalvi S., Giordani L., Mozzetta C., Barozzi I., Sandoná M., Ryan T., Rojas-Muñoz A., Madaro L., Fasanaro P., et al. HDAC-Regulated MyomiRs Control BAF60 Variant Exchange and Direct the Functional Phenotype of Fibro-Adipogenic Progenitors in Dystrophic Muscles. Genes Dev. 2014;28:841–857. doi: 10.1101/gad.234468.113. PubMed DOI PMC
Lu A., Poddar M., Tang Y., Proto J.D., Sohn J., Mu X., Oyster N., Wang B., Huard J. Rapid Depletion of Muscle Progenitor Cells in Dystrophic Mdx/Utrophin-/- Mice. Hum. Mol. Genet. 2014;23:4786–4800. doi: 10.1093/hmg/ddu194. PubMed DOI PMC
Van Erp C., Loch D., Laws N., Trebbin A., Hoey A.J. Timeline of Cardiac Dystrophy in 3-18-Month-Old MDX Mice. Muscle Nerve. 2010;42:504–513. doi: 10.1002/mus.21716. PubMed DOI
Nitahara-Kasahara Y., Hayashita-Kinoh H., Chiyo T., Nishiyama A., Okada H., Takeda S., Okada T. Dystrophic Mdx Mice Develop Severe Cardiac and Respiratory Dysfunction Following Genetic Ablation of the Anti-Inflammatory Cytokine IL-10. Hum. Mol. Genet. 2014;23:3990–4000. doi: 10.1093/hmg/ddu113. PubMed DOI
Furtado M.B., Nim H.T., Boyd S.E., Rosenthal N.A. View from the Heart: Cardiac Fibroblasts in Development, Scarring and Regeneration. Development. 2016;143:387–397. doi: 10.1242/dev.120576. PubMed DOI
Furtado Milena B., Costa Mauro W., Pranoto Edward A., Salimova E., Pinto A.R., Lam N.T., Park A., Snider P., Chandran A., Harvey R.P., et al. Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair. Circ. Res. 2014;114:1422–1434. doi: 10.1161/CIRCRESAHA.114.302530. PubMed DOI PMC
Lajiness J.D., Conway S.J. The Dynamic Role of Cardiac Fibroblasts in Development and Disease. J. Cardiovasc. Transl. Res. 2012;5:739–748. doi: 10.1007/s12265-012-9394-3. PubMed DOI PMC
Talman V., Kivelä R. Cardiomyocyte—Endothelial Cell Interactions in Cardiac Remodeling and Regeneration. Front. Cardiovasc. Med. 2018;5:101. doi: 10.3389/fcvm.2018.00101. PubMed DOI PMC
Mathison M., Rosengart T.K. Heart Regeneration: The Endothelial Cell Comes First. J. Thorac. Cardiovasc. Surg. 2018;155:1128–1129. doi: 10.1016/j.jtcvs.2017.09.106. PubMed DOI PMC
Zhang H., Lui K.O., Zhou B. Endocardial Cell Plasticity in Cardiac Development, Diseases and Regeneration. Circ. Res. 2018;122:774–789. doi: 10.1161/CIRCRESAHA.117.312136. PubMed DOI
Gray G., Toor I., Castellan R., Crisan M., Meloni M. Resident Cells of the Myocardium: More than Spectators in Cardiac Injury, Repair and Regeneration. Curr. Opin. Physiol. 2018;1:46–51. doi: 10.1016/j.cophys.2017.08.001. PubMed DOI PMC
Leong Y.Y., Ng W.H., Ellison-Hughes G.M., Tan J.J. Cardiac Stem Cells for Myocardial Regeneration: They Are Not Alone. Front. Cardiovasc. Med. 2017;4:47. doi: 10.3389/fcvm.2017.00047. PubMed DOI PMC
Hodgkinson C.P., Bareja A., Gomez J.A., Dzau V.J. Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ. Res. 2016;118:95–107. doi: 10.1161/CIRCRESAHA.115.305373. PubMed DOI PMC
Maxwell J.T., Trac D., Shen M., Brown M.E., Davis M.E., Chao M.S., Supapannachart K.J., Zaladonis C.A., Baker E., Li M.L., et al. Electrical Stimulation of Pediatric Cardiac-Derived c-Kit+ Progenitor Cells Improves Retention and Cardiac Function in Right Ventricular Heart Failure. Stem Cells. 2019;37:1528–1541. doi: 10.1002/stem.3088. PubMed DOI PMC
Zhou B., Wu S.M. Reassessment of C-Kit in Cardiac Cells: A Complex Interplay Between Expression, Fate, and Function. Circ. Res. 2018;123:9–11. doi: 10.1161/CIRCRESAHA.118.313215. PubMed DOI PMC
Finan A., Demion M., Sicard P., Guisiano M., Bideaux P., Monceaux K., Thireau J., Richard S. Prolonged Elevated Levels of C-Kit+ Progenitor Cells after a Myocardial Infarction by Beta 2 Adrenergic Receptor Priming. J. Cell. Physiol. 2019;234:18283–18296. doi: 10.1002/jcp.28461. PubMed DOI
Hong K.U., Guo Y., Li Q.-H., Cao P., Al-Maqtari T., Vajravelu B.N., Du J., Book M.J., Zhu X., Nong Y., et al. C-Kit+ Cardiac Stem Cells Alleviate Post-Myocardial Infarction Left Ventricular Dysfunction Despite Poor Engraftment and Negligible Retention in the Recipient Heart. PLoS ONE. 2014;9:e96725. doi: 10.1371/journal.pone.0096725. PubMed DOI PMC
Davis D.R. Cardiac Stem Cells in the Post-Anversa Era. Eur. Heart J. 2019;40:1039–1041. doi: 10.1093/eurheartj/ehz098. PubMed DOI
Pesl M., Jelinkova S., Caluori G., Holicka M., Krejci J., Nemec P., Kohutova A., Zampachova V., Dvorak P., Rotrekl V. Cardiovascular Progenitor Cells and Tissue Plasticity Are Reduced in a Myocardium Affected by Becker Muscular Dystrophy. Orphanet J. Rare Dis. 2020;15:65. doi: 10.1186/s13023-019-1257-4. PubMed DOI PMC
Meyers T.A., Townsend D. Early Right Ventricular Fibrosis and Reduction in Biventricular Cardiac Reserve in the Dystrophin-Deficient Mdx Heart. Am. J. Physiol. Heart Circ. Physiol. 2015;308:H303–H315. doi: 10.1152/ajpheart.00485.2014. PubMed DOI PMC
Chisholm K.M., Merker J.D., Gotlib J.R., Gitana G., Lefterova M., Zehnder J.L., George T.I., Arber D.A., Ohgami R.S. Mast Cells in Systemic Mastocytosis Have Distinctly Brighter CD45 Expression by Flow Cytometry. Am. J. Clin. Pathol. 2015;143:527–534. doi: 10.1309/AJCPZ3J4GEEYIRRA. PubMed DOI
Shiba N., Miyazaki D., Yoshizawa T., Fukushima K., Shiba Y., Inaba Y., Imamura M., Takeda S., Koike K., Nakamura A. Differential Roles of MMP-9 in Early and Late Stages of Dystrophic Muscles in a Mouse Model of Duchenne Muscular Dystrophy. Biochim. Biophys. Acta. 2015;1852:2170–2182. doi: 10.1016/j.bbadis.2015.07.008. PubMed DOI
De Oliveira F., Flavia D.O., Quintana H.T., Bortolin J.A., Gomes O.A., Liberti E.A., Ribeiro D.A. Cyclooxygenase-2 Expression in Skeletal Muscle of Knockout Mice Suffering Duchenne Muscular Dystrophy. Histochem. Cell Biol. 2013;139:685–689. doi: 10.1007/s00418-012-1065-6. PubMed DOI
Jelinkova S., Fojtik P., Kohutova A., Vilotic A., Marková L., Pesl M., Jurakova T., Kruta M., Vrbsky J., Gaillyova R., et al. Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells. 2019;8:53. doi: 10.3390/cells8010053. PubMed DOI PMC
Van Berlo J.H., Kanisicak O., Maillet M., Vagnozzi R.J., Karch J., Lin S.-C.J., Middleton R.C., Marbán E., Molkentin J.D. C-Kit+ Cells Minimally Contribute Cardiomyocytes to the Heart. Nature. 2014;509:337–341. doi: 10.1038/nature13309. PubMed DOI PMC
Sultana N., Zhang L., Yan J., Chen J., Cai W., Razzaque S., Jeong D., Sheng W., Bu L., Xu M., et al. Resident C-Kit(+) Cells in the Heart Are Not Cardiac Stem Cells. Nat. Commun. 2015;6:8701. doi: 10.1038/ncomms9701. PubMed DOI PMC
Chimenti I., Smith R.R., Li T.-S., Gerstenblith G., Messina E., Giacomello A., Marbán E. Relative Roles of Direct Regeneration versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted into Infarcted Mice. Circ. Res. 2010;106:971–980. doi: 10.1161/CIRCRESAHA.109.210682. PubMed DOI PMC
Li T.-S., Cheng K., Lee S.-T., Matsushita S., Davis D., Malliaras K., Zhang Y., Matsushita N., Smith R.R., Marbán E. Cardiospheres Recapitulate a Niche-Like Microenvironment Rich in Stemness and Cell-Matrix Interactions, Rationalizing Their Enhanced Functional Potency for Myocardial Repair. Stem Cells. 2010;28:2088–2098. doi: 10.1002/stem.532. PubMed DOI PMC
Tseliou E., Pollan S., Malliaras K., Terrovitis J., Sun B., Galang G., Marbán L., Luthringer D., Marbán E. Allogeneic Cardiospheres Safely Boost Cardiac Function and Attenuate Adverse Remodeling After Myocardial Infarction in Immunologically Mismatched Rat Strains. J. Am. Coll. Cardiol. 2013;61:1108–1119. doi: 10.1016/j.jacc.2012.10.052. PubMed DOI
Rogers R.G., Fournier M., Sanchez L., Ibrahim A.G., Aminzadeh M.A., Lewis M.I., Marbán E. Disease-Modifying Bioactivity of Intravenous Cardiosphere-Derived Cells and Exosomes in Mdx Mice. JCI Insight. 2019;4 doi: 10.1172/jci.insight.125754. PubMed DOI PMC
Aminzadeh M.A., Rogers R.G., Fournier M., Tobin R.E., Guan X., Childers M.K., Andres A.M., Taylor D.J., Ibrahim A., Ding X., et al. Exosome-Mediated Benefits of Cell Therapy in Mouse and Human Models of Duchenne Muscular Dystrophy. Stem Cell Rep. 2018;10:942–955. doi: 10.1016/j.stemcr.2018.01.023. PubMed DOI PMC
Kubo H., Jaleel N., Kumarapeli A., Berretta R.M., Bratinov G., Shan X., Wang H., Houser S.R., Margulies K.B. Increased Cardiac Myocyte Progenitors in Failing Human Hearts. Circulation. 2008;118:649–657. doi: 10.1161/CIRCULATIONAHA.107.761031. PubMed DOI PMC
Matuszczak S., Czapla J., Jarosz-Biej M., Wiśniewska E., Cichoń T., Smolarczyk R., Kobusińska M., Gajda K., Wilczek P., Sliwka J., et al. Characteristic of C-Kit+ Progenitor Cells in Explanted Human Hearts. Clin. Res. Cardiol. 2014;103:711–718. doi: 10.1007/s00392-014-0705-3. PubMed DOI PMC
Leite C.F., Lopes C.S., Alves A.C., Fuzaro C.S.C., Silva M.V., de Oliveira L.F., Garcia L.P., Farnesi T.S., de Cuba M.B., Rocha L.B., et al. Endogenous Resident C-Kit Cardiac Stem Cells Increase in Mice with an Exercise-Induced, Physiologically Hypertrophied Heart. Stem Cell Res. 2015;15:151–164. doi: 10.1016/j.scr.2015.05.011. PubMed DOI
Tidball J.G., Albrecht D.E., Lokensgard B.E., Spencer M.J. Apoptosis Precedes Necrosis of Dystrophin-Deficient Muscle. J. Cell. Sci. 1995;108:2197–2204. doi: 10.1242/jcs.108.6.2197. PubMed DOI
Mikhaĭlov V.M., Komarov S.A., Nilova V.K., Shteĭn G.I., Baranov V.S. Ultrastructural and morphometrical analysis of apoptosis stages in cardiomyocytes of MDX mice. Tsitologiia. 2001;43:729–737. PubMed
Bridges L.R. The Association of Cardiac Muscle Necrosis and Inflammation with the Degenerative and Persistent Myopathy of MDX Mice. J. Neurol. Sci. 1986;72:147–157. doi: 10.1016/0022-510X(86)90003-1. PubMed DOI
Megeney L.A., Kablar B., Perry R.L.S., Ying C., May L., Rudnicki M.A. Severe Cardiomyopathy in Mice Lacking Dystrophin and MyoD. Proc. Natl. Acad. Sci. USA. 1999;96:220–225. doi: 10.1073/pnas.96.1.220. PubMed DOI PMC
Rubi L., Todt H., Kubista H., Koenig X., Hilber K. Calcium Current Properties in Dystrophin-deficient Ventricular Cardiomyocytes from Aged Mdx Mice. Physiol. Rep. 2018;6:e13567. doi: 10.14814/phy2.13567. PubMed DOI PMC
Jelinkova S., Vilotic A., Pribyl J., Aimond F., Salykin A., Acimovic I., Pesl M., Caluori G., Klimovic S., Urban T., et al. DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate in Vitro Human Cardiac Pathophysiology. Front. Bioeng. Biotechnol. 2020;8:535. doi: 10.3389/fbioe.2020.00535. PubMed DOI PMC
Messina S., Altavilla D., Aguennouz M., Seminara P., Minutoli L., Monici M.C., Bitto A., Mazzeo A., Marini H., Squadrito F., et al. Lipid Peroxidation Inhibition Blunts Nuclear Factor-KappaB Activation, Reduces Skeletal Muscle Degeneration, and Enhances Muscle Function in Mdx Mice. Am. J. Pathol. 2006;168:918–926. doi: 10.2353/ajpath.2006.050673. PubMed DOI PMC
Radley H.G., Davies M.J., Grounds M.D. Reduced Muscle Necrosis and Long-Term Benefits in Dystrophic Mdx Mice after CV1q (Blockade of TNF) Treatment. Neuromuscul. Disord. 2008;18:227–238. doi: 10.1016/j.nmd.2007.11.002. PubMed DOI
Delfín D.A., Zang K.E., Schill K.E., Patel N.T., Janssen P.M.L., Raman S.V., Rafael-Fortney J.A. Cardiomyopathy in the Dystrophin/Utrophin-Deficient Mouse Model of Severe Muscular Dystrophy Is Characterized by Dysregulation of Matrix Metalloproteinases. Neuromuscul. Disord. 2012;22:1006–1014. doi: 10.1016/j.nmd.2012.05.002. PubMed DOI PMC
Dahiya S., Givvimani S., Bhatnagar S., Qipshidze N., Tyagi S.C., Kumar A. Osteopontin-Stimulated Expression of Matrix Metalloproteinase-9 Causes Cardiomyopathy in the Mdx Model of Duchenne Muscular Dystrophy. J. Immunol. 2011;187:2723–2731. doi: 10.4049/jimmunol.1101342. PubMed DOI PMC
Pioner J.M., Guan X., Klaiman J.M., Racca A.W., Pabon L., Muskheli V., Macadangdang J., Ferrantini C., Hoopmann M.R., Moritz R.L., et al. Absence of Full-Length Dystrophin Impairs Normal Maturation and Contraction of Cardiomyocytes Derived from Human-Induced Pluripotent Stem Cells. Cardiovasc. Res. 2020;116:368–382. doi: 10.1093/cvr/cvz109. PubMed DOI PMC
Khouzami L., Bourin M.-C., Christov C., Damy T., Escoubet B., Caramelle P., Perier M., Wahbi K., Meune C., Pavoine C., et al. Delayed Cardiomyopathy in Dystrophin Deficient Mdx Mice Relies on Intrinsic Glutathione Resource. Am. J. Pathol. 2010;177:1356–1364. doi: 10.2353/ajpath.2010.090479. PubMed DOI PMC
Siemionow M., Malik M., Langa P., Cwykiel J., Brodowska S., Heydemann A. Cardiac Protection after Systemic Transplant of Dystrophin Expressing Chimeric (DEC) Cells to the Mdx Mouse Model of Duchenne Muscular Dystrophy. Stem Cell Rev. Rep. 2019;15:827–841. doi: 10.1007/s12015-019-09916-0. PubMed DOI PMC
Au C.G., Butler T.L., Sherwood M.C., Egan J.R., North K.N., Winlaw D.S. Increased Connective Tissue Growth Factor Associated with Cardiac Fibrosis in the Mdx Mouse Model of Dystrophic Cardiomyopathy. Int. J. Exp. Pathol. 2011;92:57–65. doi: 10.1111/j.1365-2613.2010.00750.x. PubMed DOI PMC
Fayssoil A., Renault G., Guerchet N., Marchiol-Fournigault C., Fougerousse F., Richard I. Cardiac Characterization of Mdx Mice Using High-Resolution Doppler Echocardiography. J. Ultrasound Med. 2013;32:757–761. doi: 10.7863/jum.2013.32.5.757. PubMed DOI
Stuckey D.J., Carr C.A., Camelliti P., Tyler D.J., Davies K.E., Clarke K. In Vivo MRI Characterization of Progressive Cardiac Dysfunction in the Mdx Mouse Model of Muscular Dystrophy. PLoS ONE. 2012;7:e28569. doi: 10.1371/journal.pone.0028569. PubMed DOI PMC
Spurney C., Yu Q., Nagaraju K. Speckle Tracking Analysis of the Left Ventricular Anterior Wall Shows Significantly Decreased Relative Radial Strain Patterns in Dystrophin Deficient Mice after 9 Months of Age. PLoS Curr. 2011;3:RRN1273. doi: 10.1371/currents.RRN1273. PubMed DOI PMC
Taqatqa A., Bokowski J., Al-Kubaisi M., Khalil A., Miranda C., Alaksham H., Fughhi I., Kenny D., Diab K.A. The Use of Speckle Tracking Echocardiography for Early Detection of Myocardial Dysfunction in Patients with Duchenne Muscular Dystrophy. Pediatr. Cardiol. 2016;37:1422–1428. doi: 10.1007/s00246-016-1451-2. PubMed DOI
Soslow J.H., Xu M., Slaughter J.C., Stanley M., Crum K., Markham L.W., Parra D.A. Evaluation of Echocardiographic Measures of Left Ventricular Function in Patients with Duchenne Muscular Dystrophy: Assessment of Reproducibility and Comparison to Cardiac Magnetic Resonance Imaging. J. Am. Soc. Echocardiogr. 2016;29:983–991. doi: 10.1016/j.echo.2016.07.001. PubMed DOI PMC
Mertens L., Ganame J., Claus P., Goemans N., Thijs D., Eyskens B., Van Laere D., Bijnens B., D’hooge J., Sutherland G.R., et al. Early Regional Myocardial Dysfunction in Young Patients with Duchenne Muscular Dystrophy. J. Am. Soc. Echocardiogr. 2008;21:1049–1054. doi: 10.1016/j.echo.2008.03.001. PubMed DOI
Sahoo S., Losordo D.W. Exosomes and Cardiac Repair after Myocardial Infarction. Circ. Res. 2014;114:333–344. doi: 10.1161/CIRCRESAHA.114.300639. PubMed DOI
Kishore R., Khan M. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair. Circ. Res. 2016;118:330–343. doi: 10.1161/CIRCRESAHA.115.307654. PubMed DOI PMC
Singla D.K. Stem Cells and Exosomes in Cardiac Repair. Curr. Opin. Pharmacol. 2016;27:19–23. doi: 10.1016/j.coph.2016.01.003. PubMed DOI
Suzuki E., Fujita D., Takahashi M., Oba S., Nishimatsu H. Stem Cell-Derived Exosomes as a Therapeutic Tool for Cardiovascular Disease. World J. Stem Cells. 2016;8:297–305. doi: 10.4252/wjsc.v8.i9.297. PubMed DOI PMC
Saha P., Sharma S., Korutla L., Datla S.R., Shoja-Taheri F., Mishra R., Bigham G.E., Sarkar M., Morales D., Bittle G., et al. Circulating Exosomes Derived from Transplanted Progenitor Cells Aid the Functional Recovery of Ischemic Myocardium. Sci. Transl. Med. 2019;11 doi: 10.1126/scitranslmed.aau1168. PubMed DOI PMC
Fang S., Wei J., Pentinmikko N., Leinonen H., Salven P. Generation of Functional Blood Vessels from a Single C-Kit+ Adult Vascular Endothelial Stem Cell. PLoS Biol. 2012;10:e1001407. doi: 10.1371/journal.pbio.1001407. PubMed DOI PMC
Hosoda T. C-Kit-Positive Cardiac Stem Cells and Myocardial Regeneration. Am. J. Cardiovasc. Dis. 2012;2:58–67. PubMed PMC
Wang Y.X., Feige P., Brun C.E., Hekmatnejad B., Dumont N.A., Renaud J.-M., Faulkes S., Guindon D.E., Rudnicki M.A. EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions. Cell Stem Cell. 2019;24:419–432. doi: 10.1016/j.stem.2019.01.002. PubMed DOI PMC
Hsie A.W., Recio L., Katz D.S., Lee C.Q., Wagner M., Schenley R.L. Evidence for Reactive Oxygen Species Inducing Mutations in Mammalian Cells. Proc. Natl. Acad. Sci. USA. 1986;83:9616–9620. doi: 10.1073/pnas.83.24.9616. PubMed DOI PMC
Douki T., Rivière J., Cadet J. DNA Tandem Lesions Containing 8-Oxo-7,8-Dihydroguanine and Formamido Residues Arise from Intramolecular Addition of Thymine Peroxyl Radical to Guanine. Chem. Res. Toxicol. 2002;15:445–454. doi: 10.1021/tx0155909. PubMed DOI
Khairallah M., Khairallah R., Young M.E., Dyck J.R.B., Petrof B.J., Des Rosiers C. Metabolic and Signaling Alterations in Dystrophin-Deficient Hearts Precede Overt Cardiomyopathy. J. Mol. Cell. Cardiol. 2007;43:119–129. doi: 10.1016/j.yjmcc.2007.05.015. PubMed DOI
El Haddad M., Jean E., Turki A., Hugon G., Vernus B., Bonnieu A., Passerieux E., Hamade A., Mercier J., Laoudj-Chenivesse D., et al. Glutathione Peroxidase 3, a New Retinoid Target Gene, Is Crucial for Human Skeletal Muscle Precursor Cell Survival. J. Cell. Sci. 2012;125:6147–6156. doi: 10.1242/jcs.115220. PubMed DOI
Hsiao L.-C., Perbellini F., Gomes R.S.M., Tan J.J., Vieira S., Faggian G., Clarke K., Carr C.A. Murine Cardiosphere-Derived Cells Are Impaired by Age but Not by Cardiac Dystrophic Dysfunction. Stem Cells Dev. 2014;23:1027–1036. doi: 10.1089/scd.2013.0388. PubMed DOI PMC
Saito Y., Takahashi K. Selenoprotein P: Its Structure and Functions. J. Health Sci. 2000;46:409–413. doi: 10.1248/jhs.46.409. DOI
Takahashi K., Avissar N., Whitin J., Cohen H. Purification and Characterization of Human Plasma Glutathione Peroxidase: A Selenoglycoprotein Distinct from the Known Cellular Enzyme. Arch. Biochem. Biophys. 1987;256:677–686. doi: 10.1016/0003-9861(87)90624-2. PubMed DOI
Yarimizu J., Nakamura H., Yodoi J., Takahashi K. Efficiency of Selenocysteine Incorporation in Human Thioredoxin Reductase. Antioxid. Redox Signal. 2000;2:643–651. doi: 10.1089/ars.2000.2.4-643. PubMed DOI
Williams I.A., Allen D.G. The Role of Reactive Oxygen Species in the Hearts of Dystrophin-Deficient Mdx Mice. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1969–H1977. doi: 10.1152/ajpheart.00489.2007. PubMed DOI
Dick E., Kalra S., Anderson D., George V., Ritso M., Laval S.H., Barresi R., Aartsma-Rus A., Lochmüller H., Denning C. Exon Skipping and Gene Transfer Restore Dystrophin Expression in Human Induced Pluripotent Stem Cells-Cardiomyocytes Harboring DMD Mutations. Stem Cells Dev. 2013;22:2714–2724. doi: 10.1089/scd.2013.0135. PubMed DOI PMC
Inomata K., Aoto T., Binh N.T., Okamoto N., Tanimura S., Wakayama T., Iseki S., Hara E., Masunaga T., Shimizu H., et al. Genotoxic Stress Abrogates Renewal of Melanocyte Stem Cells by Triggering Their Differentiation. Cell. 2009;137:1088–1099. doi: 10.1016/j.cell.2009.03.037. PubMed DOI
Rossi D.J., Bryder D., Seita J., Nussenzweig A., Hoeijmakers J., Weissman I.L. Deficiencies in DNA Damage Repair Limit the Function of Haematopoietic Stem Cells with Age. Nature. 2007;447:725–729. doi: 10.1038/nature05862. PubMed DOI
Pilzecker B., Buoninfante O.A., van den Berk P., Lancini C., Song J.-Y., Citterio E., Jacobs H. DNA Damage Tolerance in Hematopoietic Stem and Progenitor Cells in Mice. Proc. Natl. Acad. Sci. USA. 2017;114:E6875–E6883. doi: 10.1073/pnas.1706508114. PubMed DOI PMC
Mandal P.K., Rossi D.J. DNA-Damage-Induced Differentiation in Hematopoietic Stem Cells. Cell. 2012;148:847–848. doi: 10.1016/j.cell.2012.02.011. PubMed DOI
Burkhalter M.D., Rudolph K.L., Sperka T. Genome Instability of Ageing Stem Cells--Induction and Defence Mechanisms. Ageing Res. Rev. 2015;23:29–36. doi: 10.1016/j.arr.2015.01.004. PubMed DOI PMC
Amancio G.D.C.S., Grabe-Guimarães A., Haikel D., Moreau J., Barcellos N.M.S., Lacampagne A., Matecki S., Cazorla O. Effect of Pyridostigmine on in Vivo and in Vitro Respiratory Muscle of Mdx Mice. Respir. Physiol. Neurobiol. 2017;243:107–114. doi: 10.1016/j.resp.2017.06.001. PubMed DOI
Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017;7:1–7. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC
Broadley K.J. The Langendorff Heart Preparation—Reappraisal of Its Role as a Research and Teaching Model for Coronary Vasoactive Drugs. J. Pharmacol. Methods. 1979;2:143–156. doi: 10.1016/0160-5402(79)90038-X. DOI
He J.-Q., Vu D.M., Hunt G., Chugh A., Bhatnagar A., Bolli R. Human Cardiac Stem Cells Isolated from Atrial Appendages Stably Express C-Kit. PLoS ONE. 2011;6:e27719. doi: 10.1371/journal.pone.0027719. PubMed DOI PMC
Chazalette D., Hnia K., Rivier F., Hugon G., Mornet D. Alpha7B Integrin Changes in Mdx Mouse Muscles after L-Arginine Administration. FEBS Lett. 2005;579:1079–1084. doi: 10.1016/j.febslet.2004.12.081. PubMed DOI