Both Hypoxia-Inducible Factor 1 and MAPK Signaling Pathway Attenuate PI3K/AKT via Suppression of Reactive Oxygen Species in Human Pluripotent Stem Cells
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
33553145
PubMed Central
PMC7859355
DOI
10.3389/fcell.2020.607444
Knihovny.cz E-resources
- Keywords
- HIF-1, MAPK, PI3K/AKT, hPSCs, hypoxia, reactive oxygen species,
- Publication type
- Journal Article MeSH
Mild hypoxia (5% O2) as well as FGFR1-induced activation of phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) and MAPK signaling pathways markedly support pluripotency in human pluripotent stem cells (hPSCs). This study demonstrates that the pluripotency-promoting PI3K/AKT signaling pathway is surprisingly attenuated in mild hypoxia compared to the 21% O2 environment. Hypoxia is known to be associated with lower levels of reactive oxygen species (ROS), which are recognized as intracellular second messengers capable of upregulating the PI3K/AKT signaling pathway. Our data denote that ROS downregulation results in pluripotency upregulation and PI3K/AKT attenuation in a hypoxia-inducible factor 1 (HIF-1)-dependent manner in hPSCs. Using specific MAPK inhibitors, we show that the MAPK pathway also downregulates ROS and therefore attenuates the PI3K/AKT signaling-this represents a novel interaction between these signaling pathways. This inhibition of ROS initiated by MEK1/2-ERK1/2 may serve as a negative feedback loop from the MAPK pathway toward FGFR1 and PI3K/AKT activation. We further describe the molecular mechanism resulting in PI3K/AKT upregulation in hPSCs-ROS inhibit the PI3K's primary antagonist PTEN and upregulate FGFR1 phosphorylation. These novel regulatory circuits utilizing ROS as second messengers may contribute to the development of enhanced cultivation and differentiation protocols for hPSCs. Since the PI3K/AKT pathway often undergoes an oncogenic transformation, our data could also provide new insights into the regulation of cancer stem cell signaling.
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
International Clinical Research Center St Anne's University Hospital Brno Czechia
See more in PubMed
Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P. W., Beighton G., et al. . (2007). Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat. Biotechnol. 25, 803–816. 10.1038/nbt1318 PubMed DOI
Aksamitiene E., Kiyatkin A., Kholodenko B. N. (2012). Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem. Soc. Trans. 40, 139–146. 10.1042/BST20110609 PubMed DOI
Alvarez-Tejado M., Naranjo-Suárez S., Jiménez C., Carrera A. C., Landázuri M. O., Del Peso L. (2001). Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells. Protective role in apoptosis. J. Biol. Chem. 276, 22368–22374. 10.1074/jbc.M011688200 PubMed DOI
Armstrong L., Hughes O., Yung S., Hyslop L., Stewart R., Wappler I., et al. . (2006). The role of PI3K/AKT, MAPK/ERK and NFκβ signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum. Mol. Genet. 15, 1894–1913. 10.1093/hmg/ddl112 PubMed DOI
Befani C., Mylonis I., Gkotinakou I. M., Georgoulias P., Hu C. J., Simos G., et al. . (2013). Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells. Int. J. Biochem. Cell Biol. 45, 2359–2368. 10.1016/j.biocel.2013.07.025 PubMed DOI PMC
Chiarugi P., Buricchi F. (2007). Protein tyrosine phosphorylation and reversible oxidation: two cross-talking posttranslation modifications. Antioxid. Redox Signal. 9, 1–24. 10.1089/ars.2007.9.1 PubMed DOI
Chiarugi P., Cirri P. (2003). Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem. Sci. 28, 509–514. 10.1016/S0968-0004(03)00174-9 PubMed DOI
Covello K. L., Kehler J., Yu H., Gordan J. D., Arsham A. M., Hu C. J., et al. . (2006). HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570. 10.1101/gad.1399906 PubMed DOI PMC
Covey T. M., Edes K., Fitzpatrick F. A. (2007). Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor. Oncogene 26, 5784–5792. 10.1038/sj.onc.1210391 PubMed DOI
Dalton S. (2013). Signaling networks in human pluripotent stem cells. Curr. Opin. Cell Biol. 25, 241–246. 10.1016/j.ceb.2012.09.005 PubMed DOI PMC
Dunham S. M., Pudavar H. E., Prasad P. N., Stachowiak M. K. (2004). Cellular signaling and protein-protein interactions studied using fluorescence recovery after photobleaching. J. Phys. Chem. B 108, 10540–10546. 10.1021/jp0400972 DOI
Dvorak P., Dvorakova D., Koskova S., Vodinska M., Najvirtova M., Krekac D., et al. . (2005). Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 23, 1200–1211. 10.1634/stemcells.2004-0303 PubMed DOI
Eiselleova L., Matulka K., Kriz V., Kunova M., Schmidtova Z., Neradil J., et al. . (2009). A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 27, 1847–1857. 10.1002/stem.128 PubMed DOI PMC
Esposito F., Chirico G., Gesualdi N. M., Posadas I., Ammendola R., Russo T., et al. . (2003). Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires Src activity. J. Biol. Chem. 278, 20828–20834. 10.1074/jbc.M211841200 PubMed DOI
Ezashi T., Das P., Roberts R. M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl. Acad. Sci. U.S.A. 102, 4783–4788. 10.1073/pnas.0501283102 PubMed DOI PMC
Fafilek B., Balek L., Bosakova M. K., Varecha M., Nita A., Gregor T., et al. . (2018). The inositol phosphatase SHIP2 enables sustained ERK activation downstream of FGF receptors by recruiting Src kinases. Sci. Signal. 11:eaap8608. 10.1126/scisignal.aap8608 PubMed DOI
Fischer B., Bavister B. D. (1993). Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99, 673–679. 10.1530/jrf.0.0990673 PubMed DOI
Forristal C. E., Wright K. L., Hanley N. A., Oreffo R. O. C., Houghton F. D. (2010). Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139, 85–97. 10.1530/REP-09-0300 PubMed DOI PMC
Genestra M. (2007). Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal. 19, 1807–1819. 10.1016/j.cellsig.2007.04.009 PubMed DOI
Haghighi F., Dahlmann J., Nakhaei-Rad S., Lang A., Kutschka I., Zenker M., et al. . (2018). BFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling 06 biological sciences 0601 biochemistry and cell biology. Cell Commun. Signal. 16:96. 10.1186/s12964-018-0307-1 PubMed DOI PMC
Hanschmann E. M., Godoy J. R., Berndt C., Hudemann C., Lillig C. H. (2013). Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19, 1539–1605. 10.1089/ars.2012.4599 PubMed DOI PMC
Hossini A. M., Quast A. S., Plötz M., Grauel K., Exner T., Küchler J., et al. . (2016). PI3K/AKT signaling pathway is essential for survival of induced pluripotent stem cells. PLoS ONE 11:e0154770. 10.1371/journal.pone.0154770 PubMed DOI PMC
Hung S.-C., Pochampally R. R., Chen S.-C., Hsu S.-C., Prockop D. J. (2007). Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25, 2363–2370. 10.1634/stemcells.2006-0686 PubMed DOI
Jelinkova S., Fojtik P., Kohutova A., Vilotic A., Marková L., Pesl M., et al. . (2019). Dystrophin deficiency leads to genomic instability in human pluripotent stem cells via NO synthase-induced oxidative stress. Cells 8:53. 10.3390/cells8010053 PubMed DOI PMC
Ji A. R., Ku S. Y., Cho M. S., Kim Y. Y., Kim Y. J., Oh S. K., et al. . (2010). Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp. Mol. Med. 42, 175–186. 10.3858/emm.2010.42.3.018 PubMed DOI PMC
Keith B., Johnson R. S., Simon M. C. (2012). HIF1 α and HIF2 α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22. 10.1038/nrc3183 PubMed DOI PMC
Khacho M., Clark A., Svoboda D. S., Azzi J., MacLaurin J. G., Meghaizel C., et al. . (2016). Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19, 232–247. 10.1016/j.stem.2016.04.015 PubMed DOI
Kim J. H., Choi T. G., Park S., Yun H. R., Nguyen N. N. Y., Jo Y. H., et al. . (2018). Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Cell Death Differ. 25, 1921–1937. 10.1038/s41418-018-0165-9 PubMed DOI PMC
Kruk J. S., Vasefi M. S., Heikkila J. J., Beazely M. A. (2013). Reactive oxygen species are required for 5-HT-induced transactivation of neuronal platelet-derived growth factor and TrkB receptors, but not for ERK1/2 activation. PLoS ONE 8:e77027. 10.1371/journal.pone.0077027 PubMed DOI PMC
Krutá M., Šeneklová M., Raška J., Salykin A., Zerzánková L., Pešl M., et al. . (2014). Mutation frequency dynamics in hprt locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts. Stem Cells Dev. 23, 2443–2454. 10.1089/scd.2013.0611 PubMed DOI PMC
Kučera J., Netušilová J., Sladeček S., Lánová M., Vašíček O., Štefková K., et al. . (2017). Hypoxia downregulates MAPK/ERK but not STAT3 signaling in ROS-dependent and HIF-1-independent manners in mouse embryonic stem cells. Oxid. Med. Cell. Longev. 2017:438647. 10.1155/2017/4386947 PubMed DOI PMC
Kunath T., Saba-El-Leil M. K., Almousailleakh M., Wray J., Meloche S., Smith A. (2007). FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895–2902. 10.1242/dev.02880 PubMed DOI
Lee H. H., Chang C. C., Shieh M. J., Wang J. P., Chen Y., Te Y., et al. . (2013). Hypoxia enhances chondrogenesis and prevents terminal differentiation through pi3k/akt/foxo dependent anti-apoptotic effect. Sci. Rep. 3:2683. 10.1038/srep02683 PubMed DOI PMC
Lee J. E., Shin S. H., Shin H. W., Chun Y. S., Park J. W. (2019). Nuclear FGFR2 negatively regulates hypoxia-induced cell invasion in prostate cancer by interacting with HIF-1 and HIF-2. Sci. Rep. 9:3480. 10.1038/s41598-019-39843-6 PubMed DOI PMC
Lee S. R., Yang K. S., Kwon J., Lee C., Jeong W., Rhee S. G. (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem. 277, 20336–20342. 10.1074/jbc.M111899200 PubMed DOI
Leslie N. R., Downes C. P. (2002). PTEN: the down side of PI 3-kinase signalling. Cell. Signal. 14, 285–295. 10.1016/S0898-6568(01)00234-0 PubMed DOI
Levenstein M. E., Ludwig T. E., Xu R.-H., Llanas R. A., VanDenHeuvel-Kramer K., Manning D., et al. . (2006). Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24, 568–574. 10.1634/stemcells.2005-0247 PubMed DOI PMC
Li J., Wang G., Wang C., Zhao Y., Zhang H., Tan Z., et al. . (2007). MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 75, 299–307. 10.1111/j.1432-0436.2006.00143.x PubMed DOI
Maddalena L. A., Selim S. M., Fonseca J., Messner H., McGowan S., Stuart J. A. (2017). Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture. Biochem. Biophys. Res. Commun. 493, 246–251. 10.1016/j.bbrc.2017.09.037 PubMed DOI
Mathieu J., Zhang Z., Nelson A., Lamba D. A., Reh T. A., Ware C., et al. . (2013). Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells 31, 1737–1748. 10.1002/stem.1446 PubMed DOI PMC
Mathieu J., Zhou W., Xing Y., Sperber H., Ferreccio A., Agoston Z., et al. . (2014). Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14, 592–605. 10.1016/j.stem.2014.02.012 PubMed DOI PMC
Mendoza M. C., Er E. E., Blenis J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36, 320–328. 10.1016/j.tibs.2011.03.006 PubMed DOI PMC
Miyamoto L., Yagi Y., Hatano A., Kawazoe K., Ishizawa K., Minakuchi K., et al. . (2015). Spontaneously hyperactive MEK-Erk pathway mediates paradoxical facilitation of cell proliferation in mild hypoxia. Biochim. Biophys. Acta Gen. Subj. 1850, 640–646. 10.1016/j.bbagen.2014.12.006 PubMed DOI
Okazaki K., Maltepe E. (2006). Oxygen, epigenetics and stem cell fate. Regen. Med. 1, 71–83. 10.2217/17460751.1.1.71 PubMed DOI
Okoh V. O., Felty Q., Parkash J., Poppiti R., Roy D. (2013). Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS ONE 8:e54206. 10.1371/journal.pone.0054206 PubMed DOI PMC
Östman A., Frijhoff J., Sandin Å., Böhmer F. D. (2011). Regulation of protein tyrosine phosphatases by reversible oxidation. J. Biochem. 150, 345–356. 10.1093/jb/mvr104 PubMed DOI
Papa S., Choy P. M., Bubici C. (2019). The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 38, 2223–2240. 10.1038/s41388-018-0582-8 PubMed DOI PMC
Papaconstantinou J. (2009). Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol. Cell. Endocrinol. 299, 89–100. 10.1016/j.mce.2008.11.025 PubMed DOI PMC
Raman D., Pervaiz S. (2019). Redox inhibition of protein phosphatase PP2A: potential implications in oncogenesis and its progression. Redox Biol. 27:101105. 10.1016/j.redox.2019.101105 PubMed DOI PMC
Rao R. K., Clayton L. W. (2002). Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem. Biophys. Res. Commun. 293, 610–616. 10.1016/S0006-291X(02)00268-1 PubMed DOI
Rhee S. G. (2006). H2O2, a necessary evil for cell signaling. Science 312, 1882–1883. 10.1126/science.1130481 PubMed DOI
Semenza G. L. (2001). HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13, 167–71. 10.1016/S0955-0674(00)00194-0 PubMed DOI
Shiojima I., Walsh K. (2002). Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243–1250. 10.1161/01.RES.0000022200.71892.9F PubMed DOI
Singh A. M., Reynolds D., Cliff T., Ohtsuka S., Mattheyses A. L., Sun Y., et al. . (2012). Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 10, 312–326. 10.1016/j.stem.2012.01.014 PubMed DOI PMC
Stachowiak M. K., Maher P. A., Stachowiak E. K. (2007). Integrative nuclear signaling in cell development - A role for FGF receptor-1. DNA Cell Biol. 26, 811–826. 10.1089/dna.2007.0664 PubMed DOI
Su Z., Burchfield J. G., Yang P., Humphrey S. J., Yang G., Francis D., et al. . (2019). Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nat. Commun. 10:5486. 10.1038/s41467-019-13114-4 PubMed DOI PMC
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., et al. . (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872. 10.1016/j.cell.2007.11.019 PubMed DOI
Terranova C., Narla S. T., Lee Y. W., Bard J., Parikh A., Stachowiak E. K., et al. . (2015). Global developmental gene programing involves a nuclear form of fibroblast growth factor receptor-1 (FGFR1). PLoS ONE 10:e0123380. 10.1371/journal.pone.0123380 PubMed DOI PMC
Vazquez F., Grossman S. R., Takahashi Y., Rokas M. V., Nakamura N., Sellers W. R. (2001). Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J. Biol. Chem. 276, 48627–48630. 10.1074/jbc.C100556200 PubMed DOI
Vazquez F., Ramaswamy S., Nakamura N., Sellers W. R. (2000). Phosphorylation of the PTEN tail regulates protein stability and function. Mol. Cell. Biol. 20, 5010–5018. 10.1128/MCB.20.14.5010-5018.2000 PubMed DOI PMC
Wang X. Q., Lo C. M., Chen L., Ngan E. S. W., Xu A., Poon R. Y. C. (2017). CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death Differ. 24, 38–48. 10.1038/cdd.2016.84 PubMed DOI PMC
Ward P. S., Thompson C. B. (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297–308. 10.1016/j.ccr.2012.02.014 PubMed DOI PMC
Xu C., Rosler E., Jiang J., Lebkowski J. S., Gold J. D., O'Sullivan C., et al. . (2005a). Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23, 315–323. 10.1634/stemcells.2004-0211 PubMed DOI
Xu R. H., Peck R. M., Li D. S., Feng X., Ludwig T., Thomson J. A. (2005b). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190. 10.1038/nmeth744 PubMed DOI
Yoshida Y., Takahashi K., Okita K., Ichisaka T., Yamanaka S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5, 237–241. 10.1016/j.stem.2009.08.001 PubMed DOI
Yu C. F., Liu Z. X., Cantley L. G. (2002). ERK negatively regulates the epidermal growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. J. Biol. Chem. 277, 19382–19388. 10.1074/jbc.M200732200 PubMed DOI
Yu J. S. L., Cui W. (2016). Proliferation, survival and metabolism: the role of PI3K/AKT/ mTOR signalling in pluripotency and cell fate determination. Development 143, 3050–3060. 10.1242/dev.137075 PubMed DOI
Yu P., Pan G., Yu J., Thomson J. A. (2011). FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 8, 326–334. 10.1016/j.stem.2011.01.001 PubMed DOI PMC
Zakrzewska M., Opalinski L., Haugsten E. M., Otlewski J., Wiedlocha A. (2019). Crosstalk between p38 and Erk 1/2 in downregulation of FGF1-induced signaling. Int. J. Mol. Sci. 20:1826. 10.3390/ijms20081826 PubMed DOI PMC
Zeng L., Zhou H. Y., Tang N. N., Zhang W. F., He G. J., Hao B., et al. . (2016). Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells. World J. Gastroenterol. 22, 4868–4880. 10.3748/wjg.v22.i20.4868 PubMed DOI PMC
Zhang H., Bosch-Marce M., Shimoda L. A., Yee S. T., Jin H. B., Wesley J. B., et al. . (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903. 10.1074/jbc.M800102200 PubMed DOI PMC
Zhang J., Liu Z., Rasschaert J., Blero D., Deneubourg L., Schurmans S., et al. . (2007). SHIP2 controls PtdIns(3,4,5)P3 levels and PKB activity in response to oxidative stress. Cell. Signal. 19, 2194–2200. 10.1016/j.cellsig.2007.06.022 PubMed DOI
Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., et al. . (2016). ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016:4350965. 10.1155/2016/4350965 PubMed DOI PMC
Zhang L., Liu Q., Lu L., Zhao X., Gao X., Wang Y. (2011). Astragaloside IV stimulates angiogenesis and increases hypoxia-inducible factor-1α accumulation via phosphatidylinositol 3-kinase/akt pathway. J. Pharmacol. Exp. Ther. 338, 485–491. 10.1124/jpet.111.180992 PubMed DOI
Zhang Y., Yang J. H. (2013). Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts. J. Cell. Biochem. 114, 2595–2602. 10.1002/jcb.24607 PubMed DOI
Zmajkovicova K., Jesenberger V., Catalanotti F., Baumgartner C., Reyes G., Baccarini M. (2013). MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral tolerance. Mol. Cell 50, 43–55. 10.1016/j.molcel.2013.01.037 PubMed DOI PMC