Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
28819544
PubMed Central
PMC5551543
DOI
10.1155/2017/4386947
Knihovny.cz E-resources
- MeSH
- Down-Regulation MeSH
- Hypoxia-Inducible Factor 1, alpha Subunit metabolism MeSH
- Mitogen-Activated Protein Kinase Kinases metabolism MeSH
- Mouse Embryonic Stem Cells metabolism MeSH
- Mice MeSH
- Reactive Oxygen Species metabolism MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hypoxia-Inducible Factor 1, alpha Subunit MeSH
- Mitogen-Activated Protein Kinase Kinases MeSH
- Reactive Oxygen Species MeSH
Hypoxia is involved in the regulation of stem cell fate, and hypoxia-inducible factor 1 (HIF-1) is the master regulator of hypoxic response. Here, we focus on the effect of hypoxia on intracellular signaling pathways responsible for mouse embryonic stem (ES) cell maintenance. We employed wild-type and HIF-1α-deficient ES cells to investigate hypoxic response in the ERK, Akt, and STAT3 pathways. Cultivation in 1% O2 for 24 h resulted in the strong dephosphorylation of ERK and its upstream kinases and to a lesser extent of Akt in an HIF-1-independent manner, while STAT3 phosphorylation remained unaffected. Downregulation of ERK could not be mimicked either by pharmacologically induced hypoxia or by the overexpression. Dual-specificity phosphatases (DUSP) 1, 5, and 6 are hypoxia-sensitive MAPK-specific phosphatases involved in ERK downregulation, and protein phosphatase 2A (PP2A) regulates both ERK and Akt. However, combining multiple approaches, we revealed the limited significance of DUSPs and PP2A in the hypoxia-mediated attenuation of ERK signaling. Interestingly, we observed a decreased reactive oxygen species (ROS) level in hypoxia and a similar phosphorylation pattern for ERK when the cells were supplemented with glutathione. Therefore, we suggest a potential role for the ROS-dependent attenuation of ERK signaling in hypoxia, without the involvement of HIF-1.
See more in PubMed
Lin Q., Kim Y., Alarcon R. M., Yun Z. Oxygen and cell fate decisions. Gene Regulation and Systems Biology. 2008;2:43–51. PubMed PMC
Ezashi T., Das P., Roberts R. M. Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences. 2005;102(13):4783–4788. doi: 10.1073/pnas.0501283102. PubMed DOI PMC
Jeong C.-H., Lee H.-J., Cha J.-H., Kim J. H. J.-H., Kim K.-W. K. R., Yoon D.-K. Hypoxia-inducible factor-1 alpha inhibits self-renewal of mouse embryonic stem cells in vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway. The Journal of Biological Chemistry. 2007;282(18):13672–13679. doi: 10.1074/jbc.M700534200. PubMed DOI
Prado-Lopez S., Conesa A., Armiñán A., et al. Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem Cells. 2010;28(3):407–418. doi: 10.1002/stem.295. PubMed DOI
Mathieu J., Zhang Z., Nelson A., et al. Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells. 2013;31(9):1737–1748. doi: 10.1002/stem.1446. PubMed DOI PMC
Wang G. L., Jiang B. H., Rue E. A., Semenza G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(12):5510–5514. PubMed PMC
Gu Y. Z., Moran S. M., Hogenesch J. B., Wartman L., Bradfield C. A. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expression. 1998;7(3):205–213. PubMed PMC
Huang L. E., Gu J., Schau M., Bunn H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(14):7987–7992. PubMed PMC
Maxwell P. H., Wiesener M. S., Chang G. W., et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–275. doi: 10.1038/20459. PubMed DOI
Jaakkola P., Mole D. R., Tian Y. M., et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–472. doi: 10.1126/science.1059796. PubMed DOI
Wenger R. H. Mammalian oxygen sensing, signalling and gene regulation. The Journal of Experimental Biology. 2000;203(Part 8):1253–1263. PubMed
Bedard K., Krause K. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews. 2007;87(1):245–313. doi: 10.1152/physrev.00044.2005. PubMed DOI
Chandel N. S., Budinger G. R. S. The cellular basis for diverse responses to oxygen. Free Radical Biology & Medicine. 2007;42(2):165–174. doi: 10.1016/j.freeradbiomed.2006.10.048. PubMed DOI
Niwa H., Burdon T., Chambers I., Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes & Development. 1998;12(13):2048–2060. doi: 10.1101/gad.12.13.2048. PubMed DOI PMC
Storm M. P., Bone H. K., Beck C. G., et al. Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. The Journal of Biological Chemistry. 2007;282(9):6265–6273. doi: 10.1074/jbc.M610906200. PubMed DOI
Burdon T., Stracey C., Chambers I., Nichols J., Smith A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Developmental Biology. 1999;210(1):30–43. doi: 10.1006/dbio.1999.9265. PubMed DOI
Liu C., Shi Y., Du Y., et al. Dual-specificity phosphatase DUSP1 protects overactivation of hypoxia-inducible factor 1 through inactivating ERK MAPK. Experimental Cell Research. 2005;309(2):410–418. doi: 10.1016/j.yexcr.2005.06.022. PubMed DOI
Bermudez O., Jouandin P., Rottier J., Bourcier C., Pagès G., Gimond C. Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia. Journal of Cellular Physiology. 2011;226(1):276–284. doi: 10.1002/jcp.22339. PubMed DOI
Heikkinen P. T., Nummela M., Leivonen S.-K., et al. Hypoxia-activated Smad3-specific dephosphorylation by PP2A. The Journal of Biological Chemistry. 2010;285(6):3740–3749. doi: 10.1074/jbc.M109.042978. PubMed DOI PMC
Hofstetter C. P., Burkhardt J.-K., Shin B. J., et al. Protein phosphatase 2A mediates dormancy of glioblastoma multiforme-derived tumor stem-like cells during hypoxia. PloS One. 2012;7(1, article e30059) PubMed PMC
Barbosa H. S. C., Fernandes T. G., Dias T. P., Diogo M. M., Cabral J. M. S. New insights into the mechanisms of embryonic stem cell self-renewal under hypoxia: a multifactorial analysis approach. PloS One. 2012;7(6, article e38963) PubMed PMC
Binó L., Kučera J., Štefková K., et al. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells. Chemico-Biological Interactions. 2016;244:204–214. doi: 10.1016/j.cbi.2015.12.007. PubMed DOI
Powers D. E., Millman J. R., Huang R. B., Colton C. K. Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics. Biotechnology and Bioengineering. 2008;101(2):241–254. doi: 10.1002/bit.21986. PubMed DOI
Carmeliet P., Dor Y., Herbert J. M., et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485–490. doi: 10.1038/28867. PubMed DOI
Kučera J., Binó L., Štefková K., et al. Apocynin and Diphenyleneiodonium induce oxidative stress and modulate PI3K/Akt and MAPK/Erk activity in mouse embryonic stem cells. Oxidative Medicine and Cellular Longevity. 2016;2016:14. doi: 10.1155/2016/7409196.7409196 PubMed DOI PMC
Carrero P., Okamoto K., Coumailleau P., O’Brien S., Tanaka H., Poellinger L. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Molecular and Cellular Biology. 2000;20(1):402–415. doi: 10.1128/MCB.20.1.402-415.2000. PubMed DOI PMC
Matsui T., Kinoshita T., Hirano T., Yokota T., Miyajima A. STAT3 down-regulates the expression of cyclin D during liver development. The Journal of Biological Chemistry. 2002;277(39):36167–36173. doi: 10.1074/jbc.M203184200. PubMed DOI
Kotasová H., Veselá I., Kučera J., et al. Phosphoinositide 3-kinase inhibition enables retinoic acid-induced neurogenesis in monolayer culture of embryonic stem cells. Journal of Cellular Biochemistry. 2012;113(2):563–570. doi: 10.1002/jcb.23380. PubMed DOI
Zhao H., Joseph J., Fales H. M., et al. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(16):5727–5732. PubMed PMC
Zielonka J., Vasquez-Vivar J., Kalyanaraman B. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nature Protocols. 2008;3(1):8–21. doi: 10.1038/nprot.2007.473. PubMed DOI
Kovarikova M., Pachernik J., Hofmanova J., Zadak Z., Kozubik A. TNF-alpha modulates the differentiation induced by butyrate in the HT-29 human colon adenocarcinoma cell line. European Journal of Cancer. 2000;36(14):1844–1852. doi: 10.1016/S0959-8049(00)00178-7. PubMed DOI
Stefkova K., Prochazkova J., Pachernik J. Alkaline phosphatase in stem cells. Stem Cells International. 2015;2015:11. doi: 10.1155/2015/628368.628368 PubMed DOI PMC
Paling N. R. D., Wheadon H., Bone H. K., Welham M. J. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. The Journal of Biological Chemistry. 2004;279(46):48063–48070. doi: 10.1074/jbc.M406467200. PubMed DOI
Mazumdar J., Dondeti V., Simon M. C. Hypoxia-inducible factors in stem cells and cancer. Journal of Cellular and Molecular Medicine. 2009;13(11-12):4319–4328. doi: 10.1111/j.1582-4934.2009.00963.x. PubMed DOI PMC
Albertoni M., Shaw P. H., Nozaki M., et al. Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1. Oncogene. 2002;21(27):4212–4219. doi: 10.1038/sj.onc.1205610. PubMed DOI
Vaňhara P., Hampl A., Kozubík A., Souček K. Growth/differentiation factor-15: prostate cancer suppressor or promoter? Prostate Cancer and Prostatic Diseases. 2012;15(4):320–328. doi: 10.1038/pcan.2012.6. PubMed DOI
Woo K. J., Lee T.-J., Park J.-W., Kwon T. K. Desferrioxamine, an iron chelator, enhances HIF-1alpha accumulation via cyclooxygenase-2 signaling pathway. Biochemical and Biophysical Research Communications. 2006;343(1):8–14. doi: 10.1016/j.bbrc.2006.02.116. PubMed DOI
Barrett T. D., Palomino H. L., Brondstetter T. I., et al. Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor. Molecular Pharmacology. 2011;79(6):910–920. doi: 10.1124/mol.110.070508. PubMed DOI
Kim H. J., Yang S.-J., Kim Y. S., Kim T. U. Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase activation in human cervical cancer HeLa cells. Journal of Biochemistry and Molecular Biology. 2003;36(5):468–474. PubMed
Yang S.-J., Pyen J., Lee I., Lee H., Kim Y., Kim T. Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase 1/2 activation in rat C6 glioma cells. Journal of Biochemistry and Molecular Biology. 2004;37(4):480–486. PubMed
Lee S.-K., Jang H.-J., Lee H.-J., et al. p38 and ERK MAP kinase mediates iron chelator-induced apoptosis and -suppressed differentiation of immortalized and malignant human oral keratinocytes. Life Sciences. 2006;79(15):1419–1427. doi: 10.1016/j.lfs.2006.04.011. PubMed DOI
Triantafyllou A., Liakos P., Tsakalof A., Georgatsou E., Simos G., Bonanou S. Cobalt induces hypoxia-inducible factor-1alpha (HIF-1alpha) in HeLa cells by an iron-independent, but ROS-, PI-3K- and MAPK-dependent mechanism. Free Radical Research. 2006;40(8):847–856. PubMed
Huang X., Dai J., Huang C., Zhang Q., Bhanot O., Pelle E. Deferoxamine synergistically enhances iron-mediated AP-1 activation: a showcase of the interplay between extracellular-signal-regulated kinase and tyrosine phosphatase. Free Radical Research. 2007;41(10):1135–1142. PubMed
Torres M., Forman H. J. Redox signaling and the MAP kinase pathways. BioFactors. 2003;17(1–4):287–296. PubMed
Trachootham D., Lu W., Ogasawara M. A., Nilsa R.-D. V., Huang P. Redox regulation of cell survival. Antioxidants & Redox Signaling. 2008;10(8):1343–1374. doi: 10.1089/ars.2007.1957. PubMed DOI PMC
Chandel N. S., McClintock D. S., Feliciano C. E., et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. The Journal of Biological Chemistry. 2000;275(33):25130–25138. doi: 10.1074/jbc.M001914200. PubMed DOI
Liu Y., Cui Y., Shi M., Zhang Q., Wang Q., Chen X. Deferoxamine promotes MDA-MB-231 cell migration and invasion through increased ROS-dependent HIF-1α accumulation. Cellular Physiology and Biochemistry. 2014;33(4):1036–1046. doi: 10.1159/000358674. PubMed DOI
Liu C., Shi Y., Han Z., et al. Suppression of the dual-specificity phosphatase MKP-1 enhances HIF-1 trans-activation and increases expression of EPO. Biochemical and Biophysical Research Communications. 2003;312(3):780–786. doi: 10.1016/j.bbrc.2003.10.186. PubMed DOI
Slack D. N., Seternes O. M., Gabrielsen M., Keyse S. M. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. The Journal of Biological Chemistry. 2001;276(19):16491–16500. doi: 10.1074/jbc.M010966200. PubMed DOI
Kucharska A., Rushworth L. K., Staples C., Morrice N. A., Keyse S. M. Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cellular Signalling. 2009;21(12):1794–1805. doi: 10.1016/j.cellsig.2009.07.015. PubMed DOI
Laderoute K. R., Mendonca H. L., Calaoagan J. M., Knapp A. M., Giaccia A. J., Stork P. J. Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. The Journal of Biological Chemistry. 1999;274(18):12890–12897. doi: 10.1074/jbc.274.18.12890. PubMed DOI
Seta K. A., Kim R., Kim H. W., Millhorn D. E., Beitner-Johnson D. Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis. The Journal of Biological Chemistry. 2001;276(48):44405–44412. doi: 10.1074/jbc.M103346200. PubMed DOI
Marchetti S., Gimond C., Chambard J.-C., et al. Extracellular signal-regulated kinases phosphorylate mitogen-activated protein kinase phosphatase 3/DUSP6 at serines 159 and 197, two sites critical for its proteasomal degradation. Molecular and Cellular Biology. 2005;25(2):854–864. doi: 10.1128/MCB.25.2.854-864.2005. PubMed DOI PMC
Bermudez O., Pages G., Gimond C. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. American Journal of Physiology Cell Physiology. 2010;299(2):C189–C202. PubMed
Wassarman D. A., Solomon N. M., Chang H. C., Karim F. D., Therrien M., Rubin G. M. Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila. Genes & Development. 1996;10(3):272–278. doi: 10.1101/gad.10.3.272. PubMed DOI
Kuo Y.-C., Huang K.-Y., Yang C.-H., Yang Y.-S., Lee W.-Y., Chiang C.-W. Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. The Journal of Biological Chemistry. 2008;283(4):1882–1892. doi: 10.1074/jbc.M709585200. PubMed DOI
Sontag E., Fedorov S., Kamibayashi C., Robbins D., Cobb M., Mumby M. The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell. 1993;75(5):887–897. doi: 10.1016/0092-8674(93)90533-V. PubMed DOI
Alessi D. R., Gomez N., Moorhead G., Lewis T., Keyse S. M., Cohen P. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Current Biology. 1995;5(3):283–295. doi: 10.1016/S0960-9822(95)00059-5. PubMed DOI
Sawa T., Sasaoka T., Hirai H., et al. Intracellular signalling pathways of okadaic acid leading to mitogenesis in rat1 fibroblast overexpressing insulin receptors: okadaic acid regulates Shc phosphorylation by mechanisms independent of insulin. Cellular Signalling. 1999;11(11):797–803. doi: 10.1016/S0898-6568(99)00051-0. PubMed DOI
Hernández-Sotomayor S. M., Mumby M., Carpenter G. Okadaic acid-induced hyperphosphorylation of the epidermal growth factor receptor. Comparison with receptor phosphorylation and functions affected by another tumor promoter, 12-O-tetradecanoylphorbol-13-acetate. The Journal of Biological Chemistry. 1991;266(31):21281–21286. PubMed
Ory S., Zhou M., Conrads T. P., Veenstra T. D., Morrison D. K. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Current Biology. 2003;13(16):1356–1364. doi: 10.1016/S0960-9822(03)00535-9. PubMed DOI
Zimmermann S. Phosphorylation and regulation of Raf by Akt (protein kinase B) Science. 1999;286(5445):1741–1744. doi: 10.1126/science.286.5445.1741. PubMed DOI
Zhang J., Wang X., Vikash V., et al. ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity. 2016;2016:18. doi: 10.1155/2016/4350965.4350965 PubMed DOI PMC
Son Y., Cheong Y., Kim N., Chung H., Kang D. G., Pae H. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? Journal of Signal Transduction. 2011;2011:6. doi: 10.1155/2011/792639.792639 PubMed DOI PMC
Di Meo S., Reed T. T., Venditti P., Victor V. M. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity. 2016;2016:44. doi: 10.1155/2016/1245049.1245049 PubMed DOI PMC
Marengo B., Nitti M., Furfaro A. L., et al. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxidative Medicine and Cellular Longevity. 2016;2016:16. doi: 10.1155/2016/6235641.6235641 PubMed DOI PMC
Roskoski R. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacological Research. 2012;66(2):105–143. doi: 10.1016/j.phrs.2012.04.005. PubMed DOI
Ramírez M. Á., Pericuesta E., Yáñez-Mó M., Palasz A., Gutiérrez-Adán A. Effect of long-term culture of mouse embryonic stem cells under low oxygen concentration as well as on glycosaminoglycan hyaluronan on cell proliferation and differentiation. Cell Proliferation. 2011;44(1):75–85. doi: 10.1111/j.1365-2184.2010.00732.x. PubMed DOI PMC
Chen H. F., Kuo H. C., Chen W., Wu F. C., Yang Y. S., Ho H. N. A reduced oxygen tension (5%) is not beneficial for maintaining human embryonic stem cells in the undifferentiated state with short splitting intervals. Human Reproduction. 2009;24(1):71–80. doi: 10.1093/humrep/den345. PubMed DOI
Matsuda T., Nakamura T., Nakao K., et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. The EMBO Journal. 1999;18(15):4261–4269. doi: 10.1093/emboj/18.15.4261. PubMed DOI PMC
Wu P., Wu D., Zhao L., Huang L., Shen G., Huang J. Prognostic role of STAT3 in solid tumors: a systematic review and meta-analysis. Oncotarget. 2016;7(15):19863–19883. doi: 10.18632/oncotarget.7887. PubMed DOI PMC
Yuan J., Zhang F., Niu R. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Scientific Reports. 2015;5, article 17663 doi: 10.1038/srep17663. PubMed DOI PMC
Modulation of Differentiation of Embryonic Stem Cells by Polypyrrole: The Impact on Neurogenesis
12-O-Tetradecanoylphorbol-13-acetate increases cardiomyogenesis through PKC/ERK signaling
MAPK p38alpha Kinase Influences Haematopoiesis in Embryonic Stem Cells