Alkaline phosphatase in stem cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
25767512
PubMed Central
PMC4342173
DOI
10.1155/2015/628368
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells.
Zobrazit více v PubMed
Kim E. E., Wyckoff H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. Journal of Molecular Biology. 1991;218(2):449–464. doi: 10.1016/0022-2836(91)90724-k. PubMed DOI
Le Du M. H., Stigbrand T., Taussig M. J., Ménez A., Stura E. A. Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution: implication for a substrate specificity. The Journal of Biological Chemistry. 2001;276(12):9158–9165. doi: 10.1074/jbc.m009250200. PubMed DOI
Kozlenkov A., Manes T., Hoylaerts M. F., Millán J. L. Function assignment to conserved residues in mammalian alkaline phosphatases. The Journal of Biological Chemistry. 2002;277(25):22992–22999. doi: 10.1074/jbc.m202298200. PubMed DOI
Le Du M.-H., Millán J. L. Structural evidence of functional divergence in human alkaline phosphatases. The Journal of Biological Chemistry. 2002;277(51):49808–49814. doi: 10.1074/jbc.m207394200. PubMed DOI
Moss D. W. Alkaline phosphatase isoenzymes. Clinical Chemistry. 1982;28(10):2007–2016. PubMed
Hahnel A. C., Rappolee D. A., Millan J. L., et al. Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development. 1990;110(2):555–564. PubMed
Millán J. L. Mammalian Alkaline Phosphatases. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2006.
McComb R. M., Bowers G. N., Posen S. Alkaline Phosphatase. New York, NY, USA: Springer; 2011.
Kovaříková M., Pacherník J., Hofmanová J., Zadák Z., Kozubík A. TNF-alpha modulates the differentiation induced by butyrate in the HT-29 human colon adenocarcinoma cell line. European Journal of Cancer. 2000;36(14):1844–1852. doi: 10.1016/s0959-8049(00)00178-7. PubMed DOI
Krejčová D., Procházková J., Kubala L., Pacherník J. Modulation of cell proliferation and differentiation of human lung carcinoma cells by the interferon-alpha. General Physiology and Biophysics. 2009;28(3):294–301. doi: 10.4149/gpb_2009_03_294. PubMed DOI
McCormick C., Freshney R. I., Speirs V. Activity of interferon α, interleukin 6 and insulin in the regulation of differentiation in A549 alveolar carcinoma cells. British Journal of Cancer. 1995;71(2):232–239. doi: 10.1038/bjc.1995.49. PubMed DOI PMC
Lepire M. L., Ziomek C. A. Preimplantation mouse embryos express a heat-stable alkaline phosphatase. Biology of Reproduction. 1989;41(3):464–473. doi: 10.1095/biolreprod41.3.464. PubMed DOI
Ginsburg M., Snow M. H. L., McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development. 1990;110(2):521–528. PubMed
Pinkerton J. H., McKay D. G., Adams E. C., Hertig A. T. Development of the human ovary—a study using histochemical technics. Obstetrics and Gynecology. 1961;18:152–181. PubMed
Stoop H., Honecker F., Cools M., de Krijger R., Bokemeyer C., Looijenga L. H. J. Differentiation and development of human female germ cells during prenatal gonadogenesis: an immunohistochemical study. Human Reproduction. 2005;20(6):1466–1476. doi: 10.1093/humrep/deh800. PubMed DOI
Franke F. E., Pauls K., Rey R., Marks A., Bergmann M., Steger K. Differentiation markers of Sertoli cells and germ cells in fetal and early postnatal human testis. Anatomy and Embryology. 2004;209(2):169–177. doi: 10.1007/s00429-004-0434-x. PubMed DOI
Hustin J., Gillerot Y., Franchimont P., Collette J. Placental alkaline phosphatase in developing normal and abnormal gonads and in germ-cell tumours. Virchows Archiv A. 1990;417(1):67–72. doi: 10.1007/bf01600111. PubMed DOI
Hustin J., Collette J., Franchimont P. Immunohistochemical demonstration of placental alkaline phosphatase in various states of testicular development and in germ cell tumours. International Journal of Andrology. 1987;10(1):29–35. doi: 10.1111/j.1365-2605.1987.tb00162.x. PubMed DOI
MacGregor G. R., Zambrowicz B. P., Soriano P. Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development. 1995;121(5):1487–1496. PubMed
Langer D., Ikehara Y., Takebayashi H., Hawkes R., Zimmermann H. The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones. Neuroscience. 2007;150(4):863–879. doi: 10.1016/j.neuroscience.2007.07.064. PubMed DOI
Kermer V., Ritter M., Albuquerque B., Leib C., Stanke M., Zimmermann H. Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neuroscience Letters. 2010;485(3):208–211. doi: 10.1016/j.neulet.2010.09.013. PubMed DOI
Bossi M., Hoylaerts M. F., Millán J. L. Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases. Journal of Biological Chemistry. 1993;268(34):25409–25416. PubMed
Narisawa S., Hasegawa H., Watanabe K., Millan J. L. Stage-specific expression of alkaline phosphatase during neural development in the mouse. Developmental Dynamics. 1994;201(3):227–235. doi: 10.1002/aja.1002010306. PubMed DOI
Hýžd'alová M., Hofmanová J., Pacherník J., Vaculová A., Kozubík A. The interaction of butyrate with TNF-alpha during differentiation and apoptosis of colon epithelial cells: Role of NF-kappaB activation. Cytokine. 2008;44(1):33–43. doi: 10.1016/j.cyto.2008.06.003. PubMed DOI
Barnard J. A., Warwick G. Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth & Differentiation. 1993;4(6):495–501. PubMed
Hodin R. A., Meng S., Archer S., Tang R. Cellular growth state differentially regulates enterocyte gene expression in butyrate-treated HT-29 cells. Cell Growth & Differentiation. 1996;7(5):647–653. PubMed
Hull W. E., Halford S. E., Gutfreund H., Sykes B. D. 31P nuclear magnetic resonance study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH. Biochemistry. 1976;15(7):1547–1561. doi: 10.1021/bi00652a028. PubMed DOI
Zhang L., Balcerzak M., Radisson J., et al. Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca+2 and phosphate deposition in isolated chicken matrix vesicles. The Journal of Biological Chemistry. 2005;280(44):37289–37296. doi: 10.1074/jbc.m504260200. PubMed DOI
Cox R. P., Gilbert P., Jr., Griffin M. J. Alkaline inorganic pyrophosphatase activity of mammalian-cell alkaline phosphatase. Biochemical Journal. 1967;105(1):155–161. PubMed PMC
Georgatsos J. G. Specificity and phosphotransferase activity of purified placental alkaline phosphatase. Archives of Biochemistry and Biophysics. 1967;121(3):619–624. doi: 10.1016/0003-9861(67)90046-x. PubMed DOI
Stinson R. A., McPhee J. L., Collier H. B. Phosphotransferase activity of human alkaline phosphatases and the role of enzyme Zn2+ . Biochimica et Biophysica Acta—Protein Structure and Molecular. 1987;913(3):272–278. doi: 10.1016/0167-4838(87)90135-x. PubMed DOI
Hofmann M. C., Millan J. L. Developmental expression of alkaline phosphatase genes; reexpression in germ cell tumours and in vitro immortalized germ cells. European Urology. 1993;23(1):38–45. PubMed
Ulbright T. M. Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues. Modern Pathology. 2005;18(2):S61–S79. doi: 10.1038/modpathol.3800310. PubMed DOI
Fishman W. H., Inglis N. R., Green S., et al. Immunology and biochemistry of Regan isoenzyme of alkaline phosphatase in human cancer. Nature. 1968;219(5155):697–699. doi: 10.1038/219697a0. PubMed DOI
Li M., Gao J., Feng R., et al. Generation of monoclonal antibody MS17-57 targeting secreted alkaline phosphatase ectopically expressed on the surface of gastrointestinal cancer cells. PLoS ONE. 2013;8(10) doi: 10.1371/journal.pone.0077398.e77398 PubMed DOI PMC
Goldsmith J. D., Pawel B., Goldblum J. R., et al. Detection and diagnostic utilization of placental alkaline phosphatase in muscular tissue and tumors with myogenic differentiation. The American Journal of Surgical Pathology. 2002;26(12):1627–1633. doi: 10.1097/00000478-200212000-00011. PubMed DOI
Alpers D. H., Mahmood A., Engle M., Yamagishi F., DeSchryver-Kecskemeti K. The secretion of intestinal alkaline phosphatase (IAP) from the enterocyte. Journal of Gastroenterology. 1994;29(supplement 7):63–67. PubMed
Mahmood A., Yamagishi F., Eliakim R., DeSchryver-Kecskemeti K., Gramlich T. L., Alpers D. H. A possible role for rat intestinal surfactant-like particles in transepithelial triacylglycerol transport. The Journal of Clinical Investigation. 1994;93(1):70–80. doi: 10.1172/jci116986. PubMed DOI PMC
Shao J.-S., Engle M., Xie Q., et al. Effect of tissue non-specific alkaline phosphatase in maintenance of structure of murine colon and stomach. Microscopy Research and Technique. 2000;51(2):121–128. doi: 10.1002/1097-0029(20001015)51:260;121::aid-jemt362;3.0.co;2-8. PubMed DOI
Narisawa S., Huang L., Iwasaki A., Hasegawa H., Alpers D. H., Millán J. L. Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Molecular and Cellular Biology. 2003;23(21):7525–7530. doi: 10.1128/mcb.23.21.7525-7530.2003. PubMed DOI PMC
Mizumori M., Ham M., Guth P. H., Engel E., Kaunitz J. D., Akiba Y. Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. The Journal of Physiology. 2009;587(14):3651–3663. doi: 10.1113/jphysiol.2009.172270. PubMed DOI PMC
Bates J. M., Akerlund J., Mittge E., Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host and Microbe. 2007;2(6):371–382. doi: 10.1016/j.chom.2007.10.010. PubMed DOI PMC
Goldberg R. F., Austen W. G., Jr., Zhang X., et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(9):3551–3556. doi: 10.1073/pnas.0712140105. PubMed DOI PMC
Suzuki A., Guicheux J., Palmer G., et al. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone. 2002;30(1):91–98. doi: 10.1016/s8756-3282(01)00660-3. PubMed DOI
Suzuki A., Palmer G., Bonjour J.-P., Caverzasio J. Regulation of alkaline phosphatase activity by p38 MAP kinase in response to activation of Gi protein-coupled receptors by epinephrine in osteoblast-like cells. Endocrinology. 1999;140(7):3177–3182. PubMed
Rey A., Manen D., Rizzoli R., Ferrari S. L., Caverzasio J. Evidences for a role of p38 MAP kinase in the stimulation of alkaline phosphatase and matrix mineralization induced by parathyroid hormone in osteoblastic cells. Bone. 2007;41(1):59–67. doi: 10.1016/j.bone.2007.02.031. PubMed DOI
Caverzasio J., Manen D. Essential role of Wnt3a-mediated activation of mitogen-activated protein kinase p38 for the stimulation of alkaline phosphatase activity and matrix mineralization in C3H10T1/2 mesenchymal cells. Endocrinology. 2007;148(11):5323–5330. doi: 10.1210/en.2007-0520. PubMed DOI
Allen M., Svensson L., Roach M., Hambor J., McNeish J., Gabel C. A. Deficiency of the stress kinase p38α results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. The Journal of Experimental Medicine. 2000;191(5):859–870. doi: 10.1084/jem.191.5.859. PubMed DOI PMC
Kim J. M., White J. M., Shaw A. S., Sleckman B. P. MAPK p38α is dispensable for lymphocyte development and proliferation. Journal of Immunology. 2005;174(3):1239–1244. doi: 10.4049/jimmunol.174.3.1239. PubMed DOI
Tesar P. J., Chenoweth J. G., Brook F. A., et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448(7150):196–199. doi: 10.1038/nature05972. PubMed DOI
Brons I. G. M., Smithers L. E., Trotter M. W. B., et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448(7150):191–195. doi: 10.1038/nature05950. PubMed DOI
Narisawa S., Fröhlander N., Millán J. L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Developmental Dynamics. 1997;208(3):432–446. doi: 10.1002/(sici)1097-0177(199703)208:3x003C;432::aid-aja13x0003e;3.0.co;2-1. PubMed DOI
Buehr M. The primordial germ cells of mammals: some current perspectives. Experimental Cell Research. 1997;232(2):194–207. doi: 10.1006/excr.1997.3508. PubMed DOI
Shimada N., Yamada K., Tanaka T., et al. Alterations of gene expression in endoderm differentiation of F9 teratocarcinoma cells. Molecular Reproduction and Development. 2001;60(2):165–171. doi: 10.1002/mrd.1073. PubMed DOI
Zwaka T. P., Thomson J. A. A germ cell origin of embryonic stem cell? Development. 2005;132(2):227–233. doi: 10.1242/dev.01586. PubMed DOI
Mulivor R. A., Plotkin L. I., Harris H. Differential inhibition of the products of the human alkaline phosphatase loci. Annals of Human Genetics. 1978;42(1):1–13. doi: 10.1111/j.1469-1809.1978.tb00927.x. PubMed DOI
van Belle H. Alkaline phosphatase. I. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clinical Chemistry. 1976;22(7):972–976. PubMed
Komoda T., Hokari S., Sonoda M., Sakagishi Y., Tamura T. L-phenylalanine inhibition of human alkaline phosphatases with p-nitrophenyl phosphate as substrate. Clinical Chemistry. 1982;28(12):2426–2428. PubMed
Lin C. W., Sie H. G., Fishman W. H. L-tryptophan. A non-allosteric organ-specific uncompetitive inhibitor of human placental alkaline phosphatase. Biochemical Journal. 1971;124(3):509–516. PubMed PMC
Doellgast G. J., Fishman W. H. L leucine a specific inhibitor of a rare human placental alkaline phosphatase phenotype. Nature. 1976;259(5538):49–51. doi: 10.1038/259049a0. PubMed DOI
Fishman W. H., Sie H.-G. L-Homoarginine; an inhibitor of serum “bone and liver” alkaline phosphatase. Clinica Chimica Acta. 1970;29(2):339–341. doi: 10.1016/0009-8981(70)90057-4. PubMed DOI
Brunel C., Cathala G. Imidazole: aan inhibitor of l-phenylalanine-insensitive alkaline phosphatases of tissues other than intestine and placenta. Biochimica et Biophysica Acta—Enzymology. 1972;268(2):415–421. PubMed
Nouwen E. J., Hendrix P. G., Dauwe S., Eerdekens M. W., de Broe M. E. Tumor markers in the human ovary and its neoplasms. A comparative immunohistochemical study. The American Journal of Pathology. 1987;126(2):230–242. PubMed PMC
O'Connor M. D., Kardel M. D., Iosfina I., et al. Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells. 2008;26(5):1109–1116. doi: 10.1634/stemcells.2007-0801. PubMed DOI
Pera M. F., Reubinoff B., Trounson A. Human embryonic stem cells. Journal of Cell Science. 2000;113(1):5–10. PubMed
Ginis I., Luo Y., Miura T., et al. Differences between human and mouse embryonic stem cells. Developmental Biology. 2004;269(2):360–380. doi: 10.1016/j.ydbio.2003.12.034. PubMed DOI
Andäng M., Hjerling-Leffler J., Moliner A., et al. Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature. 2008;451(7177):460–464. doi: 10.1038/nature06488. PubMed DOI
Yamanaka S., Takahashi K. Induction of pluripotent stem cells from mouse fibroblast cultures. Tanpakushitsu Kakusan Koso: Protein, Nucleic Acid, Enzyme. 2006;51(15):2346–2351. PubMed
Loh Y.-H., Wu Q., Chew J.-L., et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics. 2006;38(4):431–440. doi: 10.1038/ng1760. PubMed DOI
González F., Boué S., Belmonte J. C. I. Methods for making induced pluripotent stem cells: reprogramming à la carte. Nature Reviews Genetics. 2011;12(4):231–242. doi: 10.1038/nrg2937. PubMed DOI
Williams R. L., Hilton D. J., Pease S., et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988;336(6200):684–687. doi: 10.1038/336684a0. PubMed DOI
Rohwedel J., Guan K., Wobus A. M. Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs. 1999;165(3-4):190–202. doi: 10.1159/000016699. PubMed DOI
Mark M., Ghyselinck N. B., Chambon P. Function of retinoic acid receptors during embryonic development. Nuclear Receptor Signaling. 2009;7, article e002 PubMed PMC
Mummery C. L., Feyen A., Freund E., Shen S. Characteristics of embryonic stem cell differentiation: a comparison with two embryonal carcinoma cell lines. Cell Differentiation and Development. 1990;30(3):195–206. doi: 10.1016/0922-3371(90)90139-n. PubMed DOI
Pacherník J., Ešner M., Bryja V., Dvořák P., Hampl A. Neural differentiation of mouse embryonic stem cells grown in monolayer. Reproduction Nutrition Development. 2002;42(4):317–326. doi: 10.1051/rnd:2002028. PubMed DOI
Pacherník J., Bryja V., Ešner M., Kubala L., Dvořák P., Hampl A. Neural differentiation of pluripotent mouse embryonal carcinoma cells by retinoic acid: inhibitory effect of serum. Physiological Research. 2005;54(1):115–122. PubMed
Kotasová H., Veselá I., Kučera J., et al. Phosphoinositide 3-kinase inhibition enables retinoic acid-induced neurogenesis in monolayer culture of embryonic stem cells. Journal of Cellular Biochemistry. 2012;113(2):563–570. doi: 10.1002/jcb.23380. PubMed DOI
Gianni' M., Studer M., Carpani G., Terao M., Garattini E. Retinoic acid induces liver/bone/kidney-type alkaline phosphatase gene expression in F9 teratocarcinoma cells. The Biochemical Journal. 1991;274(3):673–678. PubMed PMC
Scheibe R. J., Moeller-Runge I., Mueller W. H. Retinoic acid induces the expression of alkaline phosphatase in P19 teratocarcinoma cells. The Journal of Biological Chemistry. 1991;266(31):21300–21305. PubMed
Preclíková H., Bryja V., Pacherník J., Krejčí P., Dvořák P., Hampl A. Early cycling-independent changes to p27, cyclin D2, and cyclin D3 in differentiating mouse embryonal carcinoma cells. Cell Growth and Differentiation. 2002;13(9):421–430. PubMed
Bryja V., Pacherník J., Vondráček J., et al. Lineage specific composition of cyclin D-CDK4/CDK6-p27 complexes reveals distinct functions of CDK4, CDK6 and individual D-type cyclins in differentiating cells of embryonic origin. Cell Proliferation. 2008;41(6):875–893. doi: 10.1111/j.1365-2184.2008.00556.x. PubMed DOI PMC
Bryja V., Pacherník J., Souček K., Horvath V., Dvořák P., Hampl A. Increased apoptosis in differentiating p27-deficient mouse embryonic stem cells. Cellular and Molecular Life Sciences. 2004;61(11):1384–1400. doi: 10.1007/s00018-004-4081-4. PubMed DOI PMC
Nayernia K., Nolte J., Michelmann H. W., et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Developmental Cell. 2006;11(1):125–132. doi: 10.1016/j.devcel.2006.05.010. PubMed DOI
Elliott A. M., de Miguel M. P., Rebel V. I., Donovan P. J. Identifying genes differentially expressed between PGCs and ES cells reveals a role for CREB-binding protein in germ cell survival. Developmental Biology. 2007;311(2):347–358. doi: 10.1016/j.ydbio.2007.08.029. PubMed DOI
Pikarsky E., Sharir H., Ben-Shushan E., Bergman Y. Retinoic acid represses Oct-3/4 gene expression through several retinoic acid-responsive elements located in the promoter-enhancer region. Molecular and Cellular Biology. 1994;14(2):1026–1038. PubMed PMC
Kim J. S., Kim B. S., Kim J., Park C.-S., Chung I. Y. The phosphoinositide-3-kinase/Akt pathway mediates the transient increase in Nanog expression during differentiation of F9 cells. Archives of Pharmacal Research. 2010;33(7):1117–1125. doi: 10.1007/s12272-010-0719-y. PubMed DOI
Hallmann D., Trümper K., Trusheim H., et al. Altered signaling and cell cycle regulation in embryonal stem cells with a disruption of the gene for phosphoinositide 3-kinase regulatory subunit p85α . The Journal of Biological Chemistry. 2003;278(7):5099–5108. doi: 10.1074/jbc.m208451200. PubMed DOI PMC
Paling N. R. D., Wheadon H., Bone H. K., Welham M. J. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. The Journal of Biological Chemistry. 2004;279(46):48063–48070. PubMed
Rodda D. J., Chew J.-L., Lim L.-H., et al. Transcriptional regulation of Nanog by OCT4 and SOX2. Journal of Biological Chemistry. 2005;280(26):24731–24737. doi: 10.1074/jbc.M502573200. PubMed DOI
Pan G., Li J., Zhou Y., Zheng H., Pei D. A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. The FASEB Journal. 2006;20(10):1730–1732. doi: 10.1096/fj.05-5543fje. PubMed DOI
Yamaguchi S., Kurimoto K., Yabuta Y., et al. Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells. Development. 2009;136(23):4011–4020. doi: 10.1242/dev.041160. PubMed DOI
Heine P., Braun N., Heilbronn A., Zimmermann H. Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. European Journal of Biochemistry. 1999;262(1):102–107. doi: 10.1046/j.1432-1327.1999.00347.x. PubMed DOI
Jaiswal R. K., Jaiswal N., Bruder S. P., Mbalaviele G., Marshak D. R., Pittenger M. F. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. The Journal of Biological Chemistry. 2000;275(13):9645–9652. doi: 10.1074/jbc.275.13.9645. PubMed DOI
Bühring H.-J., Treml S., Cerabona F., De Zwart P., Kanz L., Sobiesiak M. Phenotypic characterization of distinct human bone marrow-derived MSC subsets. Annals of the New York Academy of Sciences. 2009;1176:124–134. doi: 10.1111/j.1749-6632.2009.04564.x. PubMed DOI
Gargett C. E., Masuda H. Adult stem cells in the endometrium. Molecular Human Reproduction. 2010;16(11):818–834. doi: 10.1093/molehr/gaq061. PubMed DOI
Sobiesiak M., Sivasubramaniyan K., Hermann C., et al. The mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase. Stem Cells and Development. 2010;19(5):669–677. doi: 10.1089/scd.2009.0290. PubMed DOI
Kim Y. H., Yoon D. S., Kim H. O., Lee J. W. Characterization of different subpopulations from bone marrow-derived mesenchymal stromal cells by alkaline phosphatase expression. Stem Cells and Development. 2012;21(16):2958–2968. doi: 10.1089/scd.2011.0349. PubMed DOI PMC
Kenmotsu M., Matsuzaka K., Kokubu E., Azuma T., Inoue T. Analysis of side population cells derived from dental pulp tissue. International Endodontic Journal. 2010;43(12):1132–1142. doi: 10.1111/j.1365-2591.2010.01789.x. PubMed DOI PMC
Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy