Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy

. 2020 Mar 31 ; 21 (7) : . [epub] 20200331

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32244538

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000492 European Regional Development Fund
NV18-08-00412 Ministerstvo Zdravotnictví Ceské Republiky

Human pluripotent stem cells have the potential to change the way in which human diseases are cured. Clinical-grade human embryonic stem cells and human induced pluripotent stem cells have to be created according to current good manufacturing practices and regulations. Quality and safety must be of the highest importance when humans' lives are at stake. With the rising number of clinical trials, there is a need for a consensus on hPSCs characterization. Here, we summarize mandatory and 'for information only' characterization methods with release criteria for the establishment of clinical-grade hPSC lines.

Zobrazit více v PubMed

Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI

Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI

Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood. 1993;81:2844–2853. doi: 10.1182/blood.V81.11.2844.2844. PubMed DOI

Richardson S.M., Hoyland J.A., Mobasheri R., Csaki C., Shakibaei M., Mobasheri A. Mesenchymal stem cells in regenerative medicine: Opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J. Cell. Physiol. 2010;222:23–32. doi: 10.1002/jcp.21915. PubMed DOI

Deng J., Shoemaker R., Xie B., Gore A., LeProust E.M., Antosiewicz-Bourget J., Egli D., Maherali N., Park I.-H., Yu J., et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 2009;27:353–360. doi: 10.1038/nbt.1530. PubMed DOI PMC

Ruiz S., Diep D., Gore A., Panopoulos A.D., Montserrat N., Plongthongkum N., Kumar S., Fung H.-L., Giorgetti A., Bilic J., et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA. 2012;109:16196–16201. doi: 10.1073/pnas.1202352109. PubMed DOI PMC

Lister R., Pelizzola M., Kida Y.S., Hawkins R.D., Nery J.R., Hon G., Antosiewicz-Bourget J., O’Malley R., Castanon R., Klugman S., et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68–73. doi: 10.1038/nature09798. PubMed DOI PMC

Ghosh Z., Wilson K.D., Wu Y., Hu S., Quertermous T., Wu J.C. Persistent Donor Cell Gene Expression among Human Induced Pluripotent Stem Cells Contributes to Differences with Human Embryonic Stem Cells. PloS ONE. 2010;5:e8975. doi: 10.1371/journal.pone.0008975. PubMed DOI PMC

Kim K., Zhao R., Doi A., Ng K., Unternaehrer J., Cahan P., Hongguang H., Loh Y.-H., Aryee M.J., Lensch M.W., et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 2011;29:1117–1119. doi: 10.1038/nbt.2052. PubMed DOI PMC

Ohi Y., Qin H., Hong C., Blouin L., Polo J.M., Guo T., Qi Z., Downey S.L., Manos P.D., Rossi D.J., et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 2011;13:541–549. doi: 10.1038/ncb2239. PubMed DOI PMC

Haase A., Glienke W., Engels L., Göhring G., Esser R., Arseniev L., Martin U. GMP-compatible manufacturing of three iPS cell lines from human peripheral blood. Stem Cell Res. 2019;35:101394. doi: 10.1016/j.scr.2019.101394. PubMed DOI

Loh Y.-H., Agarwal S., Park I.-H., Urbach A., Huo H., Heffner G.C., Kim K., Miller J.D., Ng K., Daley G.Q. Generation of induced pluripotent stem cells from human blood. Blood. 2009;113:5476–5479. doi: 10.1182/blood-2009-02-204800. PubMed DOI PMC

Takahashi K., Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140:2457–2461. doi: 10.1242/dev.092551. PubMed DOI

Bravery C.A. Do Human Leukocyte Antigen-Typed Cellular Therapeutics Based on Induced Pluripotent Stem Cells Make Commercial Sense? Stem Cells Dev. 2014;24:1–10. doi: 10.1089/scd.2014.0136. PubMed DOI

Taylor C.J., Bolton E.M., Pocock S., Sharples L.D., Pedersen R.A., Bradley J.A. Banking on human embryonic stem cells: Estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:7. doi: 10.1016/S0140-6736(05)67813-0. PubMed DOI

Taylor C.J., Peacock S., Chaudhry A.N., Bradley J.A., Bolton E.M. Generating an iPSC Bank for HLA-Matched Tissue Transplantation Based on Known Donor and Recipient HLA Types. Cell Stem Cell. 2012;11:147–152. doi: 10.1016/j.stem.2012.07.014. PubMed DOI

Gourraud P.-A., Gilson L., Girard M., Peschanski M. The Role of Human Leukocyte Antigen Matching in the Development of Multiethnic “Haplobank” of Induced Pluripotent Stem Cell Lines. Stem Cells. 2012;30:180–186. doi: 10.1002/stem.772. PubMed DOI

Xiang M., Lu M., Quan J., Xu M., Meng D., Cui A., Li N., Liu Y., Lu P., Kang X., et al. Direct in vivo application of induced pluripotent stem cells is feasible and can be safe. Theranostics. 2019;9:290–310. doi: 10.7150/thno.28671. PubMed DOI PMC

Lu M., Peng L., Ming X., Wang X., Cui A., Li Y., Wang X., Meng D., Sun N., Xiang M., et al. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. EBioMedicine. 2019;42:443–457. doi: 10.1016/j.ebiom.2019.03.011. PubMed DOI PMC

Ilic D., Devito L., Miere C., Codognotto S. Human embryonic and induced pluripotent stem cells in clinical trials. Br. Med. Bull. 2015;116:19–27. doi: 10.1093/bmb/ldv045. PubMed DOI

Biotherapeutics A. Asterias Provides Top Line 12 Month Data Update for its OPC1 Phase 1/2a Clinical Trial in Severe Spinal Cord Injury. [(accessed on 23 February 2020)]; Available online: http://www.globenewswire.com/news-release/2019/01/24/1704757/0/en/Asterias-Provides-Top-Line-12-Month-Data-Update-for-its-OPC1-Phase-1-2a-Clinical-Trial-in-Severe-Spinal-Cord-Injury.html.

Treating Heart Failure With hPSC-CMs—Full Text View—ClinicalTrials.gov. [(accessed on 25 July 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03763136.

ICTRP Search Portal. [(accessed on 28 February 2020)]; Available online: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=JPRN-jRCT2053190081.

Takashima K., Inoue Y., Tashiro S., Muto K. Lessons for reviewing clinical trials using induced pluripotent stem cells: Examining the case of a first-in-human trial for age-related macular degeneration. Regen. Med. 2017;13:123–128. doi: 10.2217/rme-2017-0130. PubMed DOI

Schwartz S.D., Hubschman J.-P., Heilwell G., Franco-Cardenas V., Pan C.K., Ostrick R.M., Mickunas E., Gay R., Klimanskaya I., Lanza R. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet. 2012;379:713–720. doi: 10.1016/S0140-6736(12)60028-2. PubMed DOI

ICTRP Search Portal. [(accessed on 28 February 2020)]; Available online: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=JPRN-UMIN000036539.

Anonymous Good Manufacturing Practice. [(accessed on 20 March 2020)]; Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/compliance/good-manufacturing-practice.

Unger C., Skottman H., Blomberg P., Dilber M.S., Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum. Mol. Genet. 2008;17:R48–R53. doi: 10.1093/hmg/ddn079. PubMed DOI

Merkle F.T., Ghosh S., Kamitaki N., Mitchell J., Avior Y., Mello C., Kashin S., Mekhoubad S., Ilic D., Charlton M., et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017;545:229–233. doi: 10.1038/nature22312. PubMed DOI PMC

Närvä E., Autio R., Rahkonen N., Kong L., Harrison N., Kitsberg D., Borghese L., Itskovitz-Eldor J., Rasool O., Dvorak P., et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat. Biotechnol. 2010;28:371–377. doi: 10.1038/nbt.1615. PubMed DOI

Martin M.J., Muotri A., Gage F., Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 2005;11:nm1181. doi: 10.1038/nm1181. PubMed DOI

Cobo F., Navarro J.M., Herrera M.I., Vivo A., Porcel D., Hernández C., Jurado M., García-Castro J., Menendez P. Electron Microscopy Reveals the Presence of Viruses in Mouse Embryonic Fibroblasts But Neither in Human Embryonic Fibroblasts Nor in Human Mesenchymal Cells Used for hESC Maintenance: Toward an Implementation of Microbiological Quality Assurance Program in Stem Cell Banks. Cloning Stem Cells. 2008;10:65–74. PubMed

Tannenbaum S.E., Turetsky T.T., Singer O., Aizenman E., Kirshberg S., Ilouz N., Gil Y., Berman-Zaken Y., Perlman T.S., Geva N., et al. Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells – Platforms for Future Clinical Applications. PloS ONE. 2012;7:e35325. doi: 10.1371/journal.pone.0035325. PubMed DOI PMC

Baghbaderani B.A., Tian X., Neo B.H., Burkall A., Dimezzo T., Sierra G., Zeng X., Warren K., Kovarcik D.P., Fellner T., et al. cGMP-Manufactured Human Induced Pluripotent Stem Cells Are Available for Pre-clinical and Clinical Applications. Stem Cell Rep. 2015;5:647–659. doi: 10.1016/j.stemcr.2015.08.015. PubMed DOI PMC

The International Stem Cell Initiative* Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007;25:803–816. doi: 10.1038/nbt1318. PubMed DOI

Pera M.F., Reubinoff B., Trounson A. Human embryonic stem cells. J. Cell Sci. 2000;113:5–10. PubMed

De Sousa P.A., Downie J.M., Tye B.J., Bruce K., Dand P., Dhanjal S., Serhal P., Harper J., Turner M., Bateman M. Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res. 2016;17:379–390. doi: 10.1016/j.scr.2016.08.011. PubMed DOI

Crook J.M., Peura T.T., Kravets L., Bosman A.G., Buzzard J.J., Horne R., Hentze H., Dunn N.R., Zweigerdt R., Chua F., et al. The Generation of Six Clinical-Grade Human Embryonic Stem Cell Lines. Cell Stem Cell. 2007;1:490–494. doi: 10.1016/j.stem.2007.10.004. PubMed DOI

Andrews P., Baker D., Benvinisty N., Miranda B., Bruce K., Brüstle O., Choi M., Choi Y.-M., Crook J., de Sousa P., et al. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI) Regen. Med. 2015;10:1–44. doi: 10.2217/rme.14.93. PubMed DOI

Sullivan S., Stacey G.N., Akazawa C., Aoyama N., Baptista R., Bedford P., Bennaceur Griscelli A., Chandra A., Elwood N., Girard M., et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen. Med. 2018;13:859–866. doi: 10.2217/rme-2018-0095. PubMed DOI

Andrews P.W., Arias-Diaz J., Auerbach J., Alvarez M., Ahrlund-Richter L., Baker D., Benvenisty N., Ben-Josef D., Blin G., Borghese L., et al. Consensus Guidance for Banking and Supply of Human Embryonic Stem Cell Lines for Research Purposes. Stem Cell Rev. Rep. 2009;5:301–314. PubMed

De Sousa P.A., Tye B.J., Bruce K., Dand P., Russell G., Collins D.M., Greenshields A., McDonald K., Bradburn H., Canham M.A., et al. Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9) Stem Cell Res. 2016;17:36–41. doi: 10.1016/j.scr.2016.04.020. PubMed DOI

Ye J., Bates N., Soteriou D., Grady L., Edmond C., Ross A., Kerby A., Lewis P.A., Adeniyi T., Wright R., et al. High quality clinical grade human embryonic stem cell lines derived from fresh discarded embryos. Stem Cell Res. Ther. 2017;8:128. doi: 10.1186/s13287-017-0561-y. PubMed DOI PMC

Miere C., Wood V., Kadeva N., Cornwell G., Codognotto S., Stephenson E., Ilic D. Generation of KCL038 clinical grade human embryonic stem cell line. Stem Cell Res. 2016;16:137–139. doi: 10.1016/j.scr.2015.12.024. PubMed DOI PMC

Štefková K., Procházková J., Pacherník J. Alkaline Phosphatase in Stem Cells. Stem Cells Int. 2015;2015:11. doi: 10.1155/2015/628368. PubMed DOI PMC

Lu H.-E., Tsai M.-S., Yang Y.-C., Yuan C.-C., Wang T.-H., Lin X.-Z., Tseng C.-P., Hwang S.-M. Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system. Exp. Cell Res. 2011;317:1895–1903. doi: 10.1016/j.yexcr.2011.05.017. PubMed DOI

Freedman L.P., Gibson M.C., Ethier S.P., Soule H.R., Neve R.M., Reid Y.A. Reproducibility: Changing the policies and culture of cell line authentication. Nat. Methods. 2015;12:493–497. doi: 10.1038/nmeth.3403. PubMed DOI

Sarafian R., Morato-Marques M., Borsoi J., Pereira L.V. Monitoring cell line identity in collections of human induced pluripotent stem cells. Stem Cell Res. 2018;28:66–70. doi: 10.1016/j.scr.2018.01.030. PubMed DOI

Kerrigan L., Nims R.W. Authentication of human cell-based products: The role of a new consensus standard. Regen. Med. 2011;6:255–260. doi: 10.2217/rme.11.5. PubMed DOI

Draper J.S., Smith K., Gokhale P., Moore H.D., Maltby E., Johnson J., Meisner L., Zwaka T.P., Thomson J.A., Andrews P.W. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 2004;22:53–54. doi: 10.1038/nbt922. PubMed DOI

Baker D.E.C., Harrison N.J., Maltby E., Smith K., Moore H.D., Shaw P.J., Heath P.R., Holden H., Andrews P.W. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 2007;25:207–215. doi: 10.1038/nbt1285. PubMed DOI

Tapia N., Schöler H.R. Molecular Obstacles to Clinical Translation of iPSCs. Cell Stem Cell. 2016;19:298–309. doi: 10.1016/j.stem.2016.06.017. PubMed DOI

Assou S., Bouckenheimer J., Vos J.D. Concise Review: Assessing the Genome Integrity of Human Induced Pluripotent Stem Cells: What Quality Control Metrics? Stem Cells. 2018;36:814–821. doi: 10.1002/stem.2797. PubMed DOI

Simonson O.E., Domogatskaya A., Volchkov P., Rodin S. The safety of human pluripotent stem cells in clinical treatment. Ann. Med. 2015;47:370–380. doi: 10.3109/07853890.2015.1051579. PubMed DOI

Lund R.J., Närvä E., Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat. Rev. Genet. 2012;13:732–744. doi: 10.1038/nrg3271. PubMed DOI

Nowakowska B. Clinical interpretation of copy number variants in the human genome. J. Appl. Genet. 2017;58:449–457. doi: 10.1007/s13353-017-0407-4. PubMed DOI PMC

Nagahashi M., Shimada Y., Ichikawa H., Kameyama H., Takabe K., Okuda S., Wakai T. Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci. 2019;110:6–15. doi: 10.1111/cas.13837. PubMed DOI PMC

Soukupová J., Zemánková P., Kleiblová P., Janatová M., Kleibl Z. CZECANCA: CZEch CAncer paNel for Clinical Application – Design and Optimization of the Targeted Sequencing Panel for the Identification of Cancer Susceptibility in High-risk Individuals from the Czech Republic. Klin Onkol. 2016;29:S46–S54. doi: 10.14735/amko2016S46. PubMed DOI

The Allele Frequency Net Database—Allele, haplotype and genotype frequencies in Worldwide Populations. [(accessed on 19 February 2020)]; Available online: http://allelefrequencies.net/default.asp.

Nakatsuji N., Nakajima F., Tokunaga K. HLA-haplotype banking and iPS cells. Nat. Biotechnol. 2008;26:739–740. doi: 10.1038/nbt0708-739. PubMed DOI

Itskovitz-Eldor J., Schuldiner M., Karsenti D., Eden A., Yanuka O., Amit M., Soreq H., Benvenisty N. Differentiation of Human Embryonic Stem Cells into Embryoid Bodies Comprising the Three Embryonic Germ Layers. Mol. Med. 2000;6:88–95. doi: 10.1007/BF03401776. PubMed DOI PMC

De Sousa P.A., Tye B.J., Bruce K., Dand P., Russell G., Collins D.M., Greenshields A., McDonald K., Bradburn H., Laurie A., et al. Derivation of the clinical grade human embryonic stem cell line RCe015-A (RC-11) Stem Cell Res. 2016;17:42–48. doi: 10.1016/j.scr.2016.04.021. PubMed DOI

Martí M., Mulero L., Pardo C., Morera C., Carrió M., Laricchia-Robbio L., Esteban C.R., Belmonte J.C.I. Characterization of pluripotent stem cells. Nat. Protoc. 2013;8:223–253. doi: 10.1038/nprot.2012.154. PubMed DOI

Murry C.E., Keller G. Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development. Cell. 2008;132:661–680. doi: 10.1016/j.cell.2008.02.008. PubMed DOI

Bock C., Kiskinis E., Verstappen G., Gu H., Boulting G., Smith Z.D., Ziller M., Croft G.F., Amoroso M.W., Oakley D.H., et al. Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines. Cell. 2011;144:439–452. doi: 10.1016/j.cell.2010.12.032. PubMed DOI PMC

Nelakanti R.V., Kooreman N.G., Wu J.C. Teratoma Formation: A Tool for Monitoring Pluripotency in Stem Cell Research. Curr. Protoc. Stem Cell Biol. 2015;32 doi: 10.1002/9780470151808.sc04a08s32. PubMed DOI PMC

Müller F.-J., Goldmann J., Löser P., Loring J.F. A Call to Standardize Teratoma Assays Used to Define Human Pluripotent Cell Lines. Cell Stem Cell. 2010;6:412–414. doi: 10.1016/j.stem.2010.04.009. PubMed DOI

Prokhorova T.A., Harkness L.M., Frandsen U., Ditzel N., Schrøder H.D., Burns J.S., Kassem M. Teratoma Formation by Human Embryonic Stem Cells Is Site Dependent and Enhanced by the Presence of Matrigel. Stem Cells Dev. 2008;18:47–54. doi: 10.1089/scd.2007.0266. PubMed DOI

Gropp M., Shilo V., Vainer G., Gov M., Gil Y., Khaner H., Matzrafi L., Idelson M., Kopolovic J., Zak N.B., et al. Standardization of the Teratoma Assay for Analysis of Pluripotency of Human ES Cells and Biosafety of Their Differentiated Progeny. PLoS ONE. 2012;7:e45532. doi: 10.1371/journal.pone.0045532. PubMed DOI PMC

Amit M., Itskovitz-Eldor J. Morphology of Human Embryonic and Induced Pluripotent Stem Cell Colonies Cultured with Feeders. In: Amit M., Itskovitz-Eldor J., editors. Atlas of Human Pluripotent Stem Cells. Humana Press; Totowa, NJ, USA: 2012. pp. 15–39.

Orozco-Fuentes S., Neganova I., Wadkin L.E., Baggaley A.W., Barrio R.A., Lako M., Shukurov A., Parker N.G. Quantification of the morphological characteristics of hESC colonies. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-53719-9. PubMed DOI PMC

Rodin S., Antonsson L., Hovatta O., Tryggvason K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521–based matrices under xeno-free and chemically defined conditions. Nat. Protoc. 2014;9:2354–2368. doi: 10.1038/nprot.2014.159. PubMed DOI

Chen Y.-M., Chen L.-H., Li M.-P., Li H.-F., Higuchi A., Kumar S.S., Ling Q.-D., Alarfaj A.A., Munusamy M.A., Chang Y., et al. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci. Rep. 2017;7:45146. doi: 10.1038/srep45146. PubMed DOI PMC

Shafa M., Yang F., Fellner T., Rao M.S., Baghbaderani B.A. Human-Induced Pluripotent Stem Cells Manufactured Using a Current Good Manufacturing Practice-Compliant Process Differentiate Into Clinically Relevant Cells From Three Germ Layers. Front. Med. (Lausanne) 2018;5:69. doi: 10.3389/fmed.2018.00069. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...