Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000492
European Regional Development Fund
NV18-08-00412
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
32244538
PubMed Central
PMC7177280
DOI
10.3390/ijms21072435
PII: ijms21072435
Knihovny.cz E-zdroje
- Klíčová slova
- cGMP, cell therapy, characterization, clinical, hESC, hPSCs, hiPSC, human embryonic stem cells, human induced pluripotent stem cells, human pluripotent stem cells,
- MeSH
- Bacteria MeSH
- buněčná a tkáňová terapie metody MeSH
- endotoxiny MeSH
- indukované pluripotentní kmenové buňky MeSH
- lidé MeSH
- lidské embryonální kmenové buňky MeSH
- Mycoplasma MeSH
- pluripotentní kmenové buňky * MeSH
- viry MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- endotoxiny MeSH
Human pluripotent stem cells have the potential to change the way in which human diseases are cured. Clinical-grade human embryonic stem cells and human induced pluripotent stem cells have to be created according to current good manufacturing practices and regulations. Quality and safety must be of the highest importance when humans' lives are at stake. With the rising number of clinical trials, there is a need for a consensus on hPSCs characterization. Here, we summarize mandatory and 'for information only' characterization methods with release criteria for the establishment of clinical-grade hPSC lines.
Zobrazit více v PubMed
Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI
Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood. 1993;81:2844–2853. doi: 10.1182/blood.V81.11.2844.2844. PubMed DOI
Richardson S.M., Hoyland J.A., Mobasheri R., Csaki C., Shakibaei M., Mobasheri A. Mesenchymal stem cells in regenerative medicine: Opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J. Cell. Physiol. 2010;222:23–32. doi: 10.1002/jcp.21915. PubMed DOI
Deng J., Shoemaker R., Xie B., Gore A., LeProust E.M., Antosiewicz-Bourget J., Egli D., Maherali N., Park I.-H., Yu J., et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 2009;27:353–360. doi: 10.1038/nbt.1530. PubMed DOI PMC
Ruiz S., Diep D., Gore A., Panopoulos A.D., Montserrat N., Plongthongkum N., Kumar S., Fung H.-L., Giorgetti A., Bilic J., et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA. 2012;109:16196–16201. doi: 10.1073/pnas.1202352109. PubMed DOI PMC
Lister R., Pelizzola M., Kida Y.S., Hawkins R.D., Nery J.R., Hon G., Antosiewicz-Bourget J., O’Malley R., Castanon R., Klugman S., et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68–73. doi: 10.1038/nature09798. PubMed DOI PMC
Ghosh Z., Wilson K.D., Wu Y., Hu S., Quertermous T., Wu J.C. Persistent Donor Cell Gene Expression among Human Induced Pluripotent Stem Cells Contributes to Differences with Human Embryonic Stem Cells. PloS ONE. 2010;5:e8975. doi: 10.1371/journal.pone.0008975. PubMed DOI PMC
Kim K., Zhao R., Doi A., Ng K., Unternaehrer J., Cahan P., Hongguang H., Loh Y.-H., Aryee M.J., Lensch M.W., et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 2011;29:1117–1119. doi: 10.1038/nbt.2052. PubMed DOI PMC
Ohi Y., Qin H., Hong C., Blouin L., Polo J.M., Guo T., Qi Z., Downey S.L., Manos P.D., Rossi D.J., et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 2011;13:541–549. doi: 10.1038/ncb2239. PubMed DOI PMC
Haase A., Glienke W., Engels L., Göhring G., Esser R., Arseniev L., Martin U. GMP-compatible manufacturing of three iPS cell lines from human peripheral blood. Stem Cell Res. 2019;35:101394. doi: 10.1016/j.scr.2019.101394. PubMed DOI
Loh Y.-H., Agarwal S., Park I.-H., Urbach A., Huo H., Heffner G.C., Kim K., Miller J.D., Ng K., Daley G.Q. Generation of induced pluripotent stem cells from human blood. Blood. 2009;113:5476–5479. doi: 10.1182/blood-2009-02-204800. PubMed DOI PMC
Takahashi K., Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140:2457–2461. doi: 10.1242/dev.092551. PubMed DOI
Bravery C.A. Do Human Leukocyte Antigen-Typed Cellular Therapeutics Based on Induced Pluripotent Stem Cells Make Commercial Sense? Stem Cells Dev. 2014;24:1–10. doi: 10.1089/scd.2014.0136. PubMed DOI
Taylor C.J., Bolton E.M., Pocock S., Sharples L.D., Pedersen R.A., Bradley J.A. Banking on human embryonic stem cells: Estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:7. doi: 10.1016/S0140-6736(05)67813-0. PubMed DOI
Taylor C.J., Peacock S., Chaudhry A.N., Bradley J.A., Bolton E.M. Generating an iPSC Bank for HLA-Matched Tissue Transplantation Based on Known Donor and Recipient HLA Types. Cell Stem Cell. 2012;11:147–152. doi: 10.1016/j.stem.2012.07.014. PubMed DOI
Gourraud P.-A., Gilson L., Girard M., Peschanski M. The Role of Human Leukocyte Antigen Matching in the Development of Multiethnic “Haplobank” of Induced Pluripotent Stem Cell Lines. Stem Cells. 2012;30:180–186. doi: 10.1002/stem.772. PubMed DOI
Xiang M., Lu M., Quan J., Xu M., Meng D., Cui A., Li N., Liu Y., Lu P., Kang X., et al. Direct in vivo application of induced pluripotent stem cells is feasible and can be safe. Theranostics. 2019;9:290–310. doi: 10.7150/thno.28671. PubMed DOI PMC
Lu M., Peng L., Ming X., Wang X., Cui A., Li Y., Wang X., Meng D., Sun N., Xiang M., et al. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. EBioMedicine. 2019;42:443–457. doi: 10.1016/j.ebiom.2019.03.011. PubMed DOI PMC
Ilic D., Devito L., Miere C., Codognotto S. Human embryonic and induced pluripotent stem cells in clinical trials. Br. Med. Bull. 2015;116:19–27. doi: 10.1093/bmb/ldv045. PubMed DOI
Biotherapeutics A. Asterias Provides Top Line 12 Month Data Update for its OPC1 Phase 1/2a Clinical Trial in Severe Spinal Cord Injury. [(accessed on 23 February 2020)]; Available online: http://www.globenewswire.com/news-release/2019/01/24/1704757/0/en/Asterias-Provides-Top-Line-12-Month-Data-Update-for-its-OPC1-Phase-1-2a-Clinical-Trial-in-Severe-Spinal-Cord-Injury.html.
Treating Heart Failure With hPSC-CMs—Full Text View—ClinicalTrials.gov. [(accessed on 25 July 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03763136.
ICTRP Search Portal. [(accessed on 28 February 2020)]; Available online: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=JPRN-jRCT2053190081.
Takashima K., Inoue Y., Tashiro S., Muto K. Lessons for reviewing clinical trials using induced pluripotent stem cells: Examining the case of a first-in-human trial for age-related macular degeneration. Regen. Med. 2017;13:123–128. doi: 10.2217/rme-2017-0130. PubMed DOI
Schwartz S.D., Hubschman J.-P., Heilwell G., Franco-Cardenas V., Pan C.K., Ostrick R.M., Mickunas E., Gay R., Klimanskaya I., Lanza R. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet. 2012;379:713–720. doi: 10.1016/S0140-6736(12)60028-2. PubMed DOI
ICTRP Search Portal. [(accessed on 28 February 2020)]; Available online: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=JPRN-UMIN000036539.
Anonymous Good Manufacturing Practice. [(accessed on 20 March 2020)]; Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/compliance/good-manufacturing-practice.
Unger C., Skottman H., Blomberg P., Dilber M.S., Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum. Mol. Genet. 2008;17:R48–R53. doi: 10.1093/hmg/ddn079. PubMed DOI
Merkle F.T., Ghosh S., Kamitaki N., Mitchell J., Avior Y., Mello C., Kashin S., Mekhoubad S., Ilic D., Charlton M., et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017;545:229–233. doi: 10.1038/nature22312. PubMed DOI PMC
Närvä E., Autio R., Rahkonen N., Kong L., Harrison N., Kitsberg D., Borghese L., Itskovitz-Eldor J., Rasool O., Dvorak P., et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat. Biotechnol. 2010;28:371–377. doi: 10.1038/nbt.1615. PubMed DOI
Martin M.J., Muotri A., Gage F., Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 2005;11:nm1181. doi: 10.1038/nm1181. PubMed DOI
Cobo F., Navarro J.M., Herrera M.I., Vivo A., Porcel D., Hernández C., Jurado M., García-Castro J., Menendez P. Electron Microscopy Reveals the Presence of Viruses in Mouse Embryonic Fibroblasts But Neither in Human Embryonic Fibroblasts Nor in Human Mesenchymal Cells Used for hESC Maintenance: Toward an Implementation of Microbiological Quality Assurance Program in Stem Cell Banks. Cloning Stem Cells. 2008;10:65–74. PubMed
Tannenbaum S.E., Turetsky T.T., Singer O., Aizenman E., Kirshberg S., Ilouz N., Gil Y., Berman-Zaken Y., Perlman T.S., Geva N., et al. Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells – Platforms for Future Clinical Applications. PloS ONE. 2012;7:e35325. doi: 10.1371/journal.pone.0035325. PubMed DOI PMC
Baghbaderani B.A., Tian X., Neo B.H., Burkall A., Dimezzo T., Sierra G., Zeng X., Warren K., Kovarcik D.P., Fellner T., et al. cGMP-Manufactured Human Induced Pluripotent Stem Cells Are Available for Pre-clinical and Clinical Applications. Stem Cell Rep. 2015;5:647–659. doi: 10.1016/j.stemcr.2015.08.015. PubMed DOI PMC
The International Stem Cell Initiative* Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007;25:803–816. doi: 10.1038/nbt1318. PubMed DOI
Pera M.F., Reubinoff B., Trounson A. Human embryonic stem cells. J. Cell Sci. 2000;113:5–10. PubMed
De Sousa P.A., Downie J.M., Tye B.J., Bruce K., Dand P., Dhanjal S., Serhal P., Harper J., Turner M., Bateman M. Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res. 2016;17:379–390. doi: 10.1016/j.scr.2016.08.011. PubMed DOI
Crook J.M., Peura T.T., Kravets L., Bosman A.G., Buzzard J.J., Horne R., Hentze H., Dunn N.R., Zweigerdt R., Chua F., et al. The Generation of Six Clinical-Grade Human Embryonic Stem Cell Lines. Cell Stem Cell. 2007;1:490–494. doi: 10.1016/j.stem.2007.10.004. PubMed DOI
Andrews P., Baker D., Benvinisty N., Miranda B., Bruce K., Brüstle O., Choi M., Choi Y.-M., Crook J., de Sousa P., et al. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI) Regen. Med. 2015;10:1–44. doi: 10.2217/rme.14.93. PubMed DOI
Sullivan S., Stacey G.N., Akazawa C., Aoyama N., Baptista R., Bedford P., Bennaceur Griscelli A., Chandra A., Elwood N., Girard M., et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen. Med. 2018;13:859–866. doi: 10.2217/rme-2018-0095. PubMed DOI
Andrews P.W., Arias-Diaz J., Auerbach J., Alvarez M., Ahrlund-Richter L., Baker D., Benvenisty N., Ben-Josef D., Blin G., Borghese L., et al. Consensus Guidance for Banking and Supply of Human Embryonic Stem Cell Lines for Research Purposes. Stem Cell Rev. Rep. 2009;5:301–314. PubMed
De Sousa P.A., Tye B.J., Bruce K., Dand P., Russell G., Collins D.M., Greenshields A., McDonald K., Bradburn H., Canham M.A., et al. Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9) Stem Cell Res. 2016;17:36–41. doi: 10.1016/j.scr.2016.04.020. PubMed DOI
Ye J., Bates N., Soteriou D., Grady L., Edmond C., Ross A., Kerby A., Lewis P.A., Adeniyi T., Wright R., et al. High quality clinical grade human embryonic stem cell lines derived from fresh discarded embryos. Stem Cell Res. Ther. 2017;8:128. doi: 10.1186/s13287-017-0561-y. PubMed DOI PMC
Miere C., Wood V., Kadeva N., Cornwell G., Codognotto S., Stephenson E., Ilic D. Generation of KCL038 clinical grade human embryonic stem cell line. Stem Cell Res. 2016;16:137–139. doi: 10.1016/j.scr.2015.12.024. PubMed DOI PMC
Štefková K., Procházková J., Pacherník J. Alkaline Phosphatase in Stem Cells. Stem Cells Int. 2015;2015:11. doi: 10.1155/2015/628368. PubMed DOI PMC
Lu H.-E., Tsai M.-S., Yang Y.-C., Yuan C.-C., Wang T.-H., Lin X.-Z., Tseng C.-P., Hwang S.-M. Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system. Exp. Cell Res. 2011;317:1895–1903. doi: 10.1016/j.yexcr.2011.05.017. PubMed DOI
Freedman L.P., Gibson M.C., Ethier S.P., Soule H.R., Neve R.M., Reid Y.A. Reproducibility: Changing the policies and culture of cell line authentication. Nat. Methods. 2015;12:493–497. doi: 10.1038/nmeth.3403. PubMed DOI
Sarafian R., Morato-Marques M., Borsoi J., Pereira L.V. Monitoring cell line identity in collections of human induced pluripotent stem cells. Stem Cell Res. 2018;28:66–70. doi: 10.1016/j.scr.2018.01.030. PubMed DOI
Kerrigan L., Nims R.W. Authentication of human cell-based products: The role of a new consensus standard. Regen. Med. 2011;6:255–260. doi: 10.2217/rme.11.5. PubMed DOI
Draper J.S., Smith K., Gokhale P., Moore H.D., Maltby E., Johnson J., Meisner L., Zwaka T.P., Thomson J.A., Andrews P.W. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 2004;22:53–54. doi: 10.1038/nbt922. PubMed DOI
Baker D.E.C., Harrison N.J., Maltby E., Smith K., Moore H.D., Shaw P.J., Heath P.R., Holden H., Andrews P.W. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 2007;25:207–215. doi: 10.1038/nbt1285. PubMed DOI
Tapia N., Schöler H.R. Molecular Obstacles to Clinical Translation of iPSCs. Cell Stem Cell. 2016;19:298–309. doi: 10.1016/j.stem.2016.06.017. PubMed DOI
Assou S., Bouckenheimer J., Vos J.D. Concise Review: Assessing the Genome Integrity of Human Induced Pluripotent Stem Cells: What Quality Control Metrics? Stem Cells. 2018;36:814–821. doi: 10.1002/stem.2797. PubMed DOI
Simonson O.E., Domogatskaya A., Volchkov P., Rodin S. The safety of human pluripotent stem cells in clinical treatment. Ann. Med. 2015;47:370–380. doi: 10.3109/07853890.2015.1051579. PubMed DOI
Lund R.J., Närvä E., Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat. Rev. Genet. 2012;13:732–744. doi: 10.1038/nrg3271. PubMed DOI
Nowakowska B. Clinical interpretation of copy number variants in the human genome. J. Appl. Genet. 2017;58:449–457. doi: 10.1007/s13353-017-0407-4. PubMed DOI PMC
Nagahashi M., Shimada Y., Ichikawa H., Kameyama H., Takabe K., Okuda S., Wakai T. Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci. 2019;110:6–15. doi: 10.1111/cas.13837. PubMed DOI PMC
Soukupová J., Zemánková P., Kleiblová P., Janatová M., Kleibl Z. CZECANCA: CZEch CAncer paNel for Clinical Application – Design and Optimization of the Targeted Sequencing Panel for the Identification of Cancer Susceptibility in High-risk Individuals from the Czech Republic. Klin Onkol. 2016;29:S46–S54. doi: 10.14735/amko2016S46. PubMed DOI
The Allele Frequency Net Database—Allele, haplotype and genotype frequencies in Worldwide Populations. [(accessed on 19 February 2020)]; Available online: http://allelefrequencies.net/default.asp.
Nakatsuji N., Nakajima F., Tokunaga K. HLA-haplotype banking and iPS cells. Nat. Biotechnol. 2008;26:739–740. doi: 10.1038/nbt0708-739. PubMed DOI
Itskovitz-Eldor J., Schuldiner M., Karsenti D., Eden A., Yanuka O., Amit M., Soreq H., Benvenisty N. Differentiation of Human Embryonic Stem Cells into Embryoid Bodies Comprising the Three Embryonic Germ Layers. Mol. Med. 2000;6:88–95. doi: 10.1007/BF03401776. PubMed DOI PMC
De Sousa P.A., Tye B.J., Bruce K., Dand P., Russell G., Collins D.M., Greenshields A., McDonald K., Bradburn H., Laurie A., et al. Derivation of the clinical grade human embryonic stem cell line RCe015-A (RC-11) Stem Cell Res. 2016;17:42–48. doi: 10.1016/j.scr.2016.04.021. PubMed DOI
Martí M., Mulero L., Pardo C., Morera C., Carrió M., Laricchia-Robbio L., Esteban C.R., Belmonte J.C.I. Characterization of pluripotent stem cells. Nat. Protoc. 2013;8:223–253. doi: 10.1038/nprot.2012.154. PubMed DOI
Murry C.E., Keller G. Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development. Cell. 2008;132:661–680. doi: 10.1016/j.cell.2008.02.008. PubMed DOI
Bock C., Kiskinis E., Verstappen G., Gu H., Boulting G., Smith Z.D., Ziller M., Croft G.F., Amoroso M.W., Oakley D.H., et al. Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines. Cell. 2011;144:439–452. doi: 10.1016/j.cell.2010.12.032. PubMed DOI PMC
Nelakanti R.V., Kooreman N.G., Wu J.C. Teratoma Formation: A Tool for Monitoring Pluripotency in Stem Cell Research. Curr. Protoc. Stem Cell Biol. 2015;32 doi: 10.1002/9780470151808.sc04a08s32. PubMed DOI PMC
Müller F.-J., Goldmann J., Löser P., Loring J.F. A Call to Standardize Teratoma Assays Used to Define Human Pluripotent Cell Lines. Cell Stem Cell. 2010;6:412–414. doi: 10.1016/j.stem.2010.04.009. PubMed DOI
Prokhorova T.A., Harkness L.M., Frandsen U., Ditzel N., Schrøder H.D., Burns J.S., Kassem M. Teratoma Formation by Human Embryonic Stem Cells Is Site Dependent and Enhanced by the Presence of Matrigel. Stem Cells Dev. 2008;18:47–54. doi: 10.1089/scd.2007.0266. PubMed DOI
Gropp M., Shilo V., Vainer G., Gov M., Gil Y., Khaner H., Matzrafi L., Idelson M., Kopolovic J., Zak N.B., et al. Standardization of the Teratoma Assay for Analysis of Pluripotency of Human ES Cells and Biosafety of Their Differentiated Progeny. PLoS ONE. 2012;7:e45532. doi: 10.1371/journal.pone.0045532. PubMed DOI PMC
Amit M., Itskovitz-Eldor J. Morphology of Human Embryonic and Induced Pluripotent Stem Cell Colonies Cultured with Feeders. In: Amit M., Itskovitz-Eldor J., editors. Atlas of Human Pluripotent Stem Cells. Humana Press; Totowa, NJ, USA: 2012. pp. 15–39.
Orozco-Fuentes S., Neganova I., Wadkin L.E., Baggaley A.W., Barrio R.A., Lako M., Shukurov A., Parker N.G. Quantification of the morphological characteristics of hESC colonies. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-53719-9. PubMed DOI PMC
Rodin S., Antonsson L., Hovatta O., Tryggvason K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521–based matrices under xeno-free and chemically defined conditions. Nat. Protoc. 2014;9:2354–2368. doi: 10.1038/nprot.2014.159. PubMed DOI
Chen Y.-M., Chen L.-H., Li M.-P., Li H.-F., Higuchi A., Kumar S.S., Ling Q.-D., Alarfaj A.A., Munusamy M.A., Chang Y., et al. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci. Rep. 2017;7:45146. doi: 10.1038/srep45146. PubMed DOI PMC
Shafa M., Yang F., Fellner T., Rao M.S., Baghbaderani B.A. Human-Induced Pluripotent Stem Cells Manufactured Using a Current Good Manufacturing Practice-Compliant Process Differentiate Into Clinically Relevant Cells From Three Germ Layers. Front. Med. (Lausanne) 2018;5:69. doi: 10.3389/fmed.2018.00069. PubMed DOI PMC