MAPK p38alpha Kinase Influences Haematopoiesis in Embryonic Stem Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31281375
PubMed Central
PMC6589316
DOI
10.1155/2019/5128135
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The activation of p38alpha kinase mediates cell response to various extracellular factors including many interleukins and growth factors important for haematopoiesis. The role of p38alpha kinase was previously analysed in particular haematopoietic cells. In this study and for the first time, the role of p38alpha kinase in haematopoiesis was studied using a model of continuous haematopoietic development in pluripotent embryonic stem cells in vitro. The expression of transcripts associated with haematopoiesis and the potential for the formation of specific haematopoietic cell colonies were compared between wild-type and mutant p38alpha gene-depleted cells. The absence of p38alpha kinase led to the inhibition of hemangioblast formation during the first step of haematopoiesis. Later, during differentiation, due to the lack of p38alpha kinase, erythrocyte maturation was impaired. Mutant p38α-/- cells also exhibited decreased potential with respect to the expansion of granulocyte colony-forming units. This effect was reversed in the absence of erythropoietin as shown by colony-forming unit assay in media for colony-forming unit granulocytes/macrophages. p38alpha kinase thus plays an important role in the differentiation of common myeloid precursor cells into granulocyte lineages.
Zobrazit více v PubMed
Keller G., Kennedy M., Papayannopoulou T., Wiles M. V. Hematopoietic commitment during embryonic stem cell differentiation in culture. Molecular and Cellular Biology. 1993;13(1):473–486. doi: 10.1128/MCB.13.1.473. PubMed DOI PMC
Palis J., Robertson S., Kennedy M., Wall C., Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126(22):5073–5084. PubMed
Müller A. M., Medvinsky A., Strouboulis J., Grosveld F., Dzierzakt E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994;1(4):291–301. doi: 10.1016/1074-7613(94)90081-7. PubMed DOI
Medvinsky A., Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86(6):897–906. doi: 10.1016/S0092-8674(00)80165-8. PubMed DOI
Mcgrath K., Palis J. Hematopoiesis in the yolk sac: more than meets the eye. Experimental Hematology. 2005;33(9):1021–1028. doi: 10.1016/j.exphem.2005.06.012. PubMed DOI
Cumano A., Godin I. Ontogeny of the hematopoietic system. Annual Review of Immunology. 2007;25(1):745–785. doi: 10.1146/annurev.immunol.25.022106.141538. PubMed DOI
Coulthard L. R., White D. E., Jones D. L., McDermott M. F., Burchill S. A. p38MAPK: stress responses from molecular mechanisms to therapeutics. Trends in Molecular Medicine. 2009;15(8):369–379. doi: 10.1016/j.molmed.2009.06.005. PubMed DOI PMC
Cuadrado A., Nebreda A. R. Mechanisms and functions of p38 MAPK signalling. Biochemical Journal. 2010;429(3):403–417. doi: 10.1042/BJ20100323. PubMed DOI
Geest C. R., Buitenhuis M., Laarhoven A. G., et al. p38 MAP Kinase Inhibits Neutrophil Development Through Phosphorylation of C/EBPα on Serine 21. Stem Cells. 2009;27(9):2271–2282. doi: 10.1002/stem.152. PubMed DOI
Adams R. H., Porras A., Alonso G., et al. Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development. Molecular Cell. 2000;6(1):109–116. doi: 10.1016/S1097-2765(05)00014-6. PubMed DOI
Allen M., Svensson L., Roach M., Hambor J., McNeish J., Gabel C. A. Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. The Journal of Experimental Medicine. 2000;191(5):859–870. doi: 10.1084/jem.191.5.859. PubMed DOI PMC
Mudgett J. S., Ding J., Guh-Siesel L., et al. Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proceedings of the National Academy of Sciences. 2000;97(19):10454–10459. doi: 10.1073/pnas.180316397. PubMed DOI PMC
Yang J., Boerm M., McCarty M., et al. Mekk3 is essential for early embryonic cardiovascular development. Nature Genetics. 2000;24(3):309–313. doi: 10.1038/73550. PubMed DOI
Tamura K., Sudo T., Senftleben U., Dadak A. M., Johnson R., Karin M. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell. 2000;102(2):221–231. doi: 10.1016/S0092-8674(00)00027-1. PubMed DOI
Barruet E., Hadadeh O., Peiretti F., et al. p38 mitogen activated protein kinase controls two successive-steps during the early mesodermal commitment of embryonic stem cells. Stem Cells and Development. 2011;20(7):1233–1246. doi: 10.1089/scd.2010.0213. PubMed DOI
Kim J. M., White J. M., Shaw A. S., Sleckman B. P. MAPK p38 alpha is dispensable for lymphocyte development and proliferation. The Journal of Immunology. 2005;174(3):1239–1244. doi: 10.4049/jimmunol.174.3.1239. PubMed DOI
Sanchez M. J., Holmes A., Miles C., Dzierzak E. Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity. 1996;5(6):513–525. doi: 10.1016/S1074-7613(00)80267-8. PubMed DOI
Dagher R. N., Hiatt K., Traycoff C., Srour E. F., Yoder M. C., Wells H. B. c-Kit and CD38 are expressed by long-term reconstituting hematopoietic cells present in the murine yolk sac. Biology of Blood and Marrow Transplantation. 1998;4(2):69–74. doi: 10.1053/bbmt.1998.v4.pm9763109. PubMed DOI
Mikkola H. K., Orkin S. H. The journey of developing hematopoietic stem cells. Development. 2006;133(19):3733–3744. doi: 10.1242/dev.02568. PubMed DOI
Suh H. C., Gooya J., Renn K., Friedman A. D., Johnson P. F., Keller J. R. C/EBP determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood. 2006;107(11):4308–4316. doi: 10.1182/blood-2005-06-2216. PubMed DOI PMC
Damen J. E., Krystal G. Early events in erythropoietin-induced signaling. Experimental Hematology. 1996;24(13):1455–1459. PubMed
Zhou D., Liu K., Sun C.-W., Pawlik K. M., Townes T. M. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nature Genetics. 2010;42(9):742–744. doi: 10.1038/ng.637. PubMed DOI
Rasmussen T. L., Shi X., Wallis A., et al. VEGF/Flk1 signaling cascade transactivates Etv2 gene expression. PLoS One. 2012;7(11, article e50103) doi: 10.1371/journal.pone.0050103. PubMed DOI PMC
Lacaud G., Robertson S., Palis J., Kennedy M., Keller G. Regulation of hemangioblast development. Annals of the New York Academy of Sciences. 2001;938(1):96–108. doi: 10.1111/j.1749-6632.2001.tb03578.x. PubMed DOI
Fujiwara Y., Browne C. P., Cunniff K., Goff S. C., Orkin S. H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proceedings of the National Academy of Sciences. 1996;93(22):12355–12358. doi: 10.1073/pnas.93.22.12355. PubMed DOI PMC
McGrath K., Palis J. Ontogeny of Erythropoiesis in the Mammalian Embryo. Current Topics in Developmental Biology. 2008;82:1–22. doi: 10.1016/S0070-2153(07)00001-4. PubMed DOI
Shi X., Richard J., Zirbes K. M., et al. Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Developmental Biology. 2014;389(2):208–218. doi: 10.1016/j.ydbio.2014.02.018. PubMed DOI PMC
Ma O., Hong S., Guo H., Ghiaur G., Friedman A. D. Granulopoiesis Requires Increased C/EBPα Compared to Monopoiesis, Correlated with Elevated Cebpa in Immature G-CSF Receptor versus M-CSF Receptor Expressing Cells. PLoS One. 2014;9(4):p. e95784. doi: 10.1371/journal.pone.0095784. PubMed DOI PMC
Kingsley P. D., Malik J., Emerson R. L., et al. ‘Maturational’ globin switching in primary primitive erythroid cells. Blood. 2006;107(4):1665–1672. doi: 10.1182/blood-2005-08-3097. PubMed DOI PMC
Trimborn T., Gribnau J., Grosveld F., Fraser P. Mechanisms of developmental control of transcription in the murine alpha- and beta-globin loci. Genes & Development. 1999;13(1):112–124. doi: 10.1101/gad.13.1.112. PubMed DOI PMC
Helgason C. D., Sauvageau G., Lawrence H. J., Largman C., Humphries R. K. Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro. Blood. 1996;87(7):2740–2749. PubMed
Brun A. C., Björnsson J. M., Magnusson M., et al. Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood. 2004;103(11):4126–4133. doi: 10.1182/blood-2003-10-3557. PubMed DOI
Peters S. O., Kittler E. L., Ramshaw H. S., Quesenberry P. J. Murine marrow cells expanded in culture with IL-3, IL-6, IL-11, and SCF acquire an engraftment defect in normal hosts. Experimental Hematology. 1995;23(5):461–469. PubMed
Zhang D. E., Hetherington C. J., Meyers S., et al. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Molecular and Cellular Biology. 1996;16(3):1231–1240. doi: 10.1128/MCB.16.3.1231. PubMed DOI PMC
Imperato M. R., Cauchy P., Obier N., Bonifer C. The RUNX1-PU.1 axis in the control of hematopoiesis. International Journal of Hematology. 2015;101(4):319–329. doi: 10.1007/s12185-015-1762-8. PubMed DOI
Huang G., Zhang P., Hirai H., et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nature Genetics. 2008;40(1):51–60. doi: 10.1038/ng.2007.7. PubMed DOI
Chen M. J., Yokomizo T., Zeigler B. M., Dzierzak E., Speck N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature. 2009;457(7231):887–891. doi: 10.1038/nature07619. PubMed DOI PMC
Liakhovitskaia A., Rybtsov S., Smith T., et al. Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this. Development. 2014;141(17):3319–3323. doi: 10.1242/dev.110841. PubMed DOI PMC
Tornack J., Seiler K., Grützkau A., et al. Ectopic Runx1 expression rescues Tal-1-deficiency in the generation of primitive and definitive hematopoiesis. PLoS One. 2013;8(7, article e70116) doi: 10.1371/journal.pone.0070116. PubMed DOI PMC
Kučera J., Netušilová J., Sladeček S., et al. Hypoxia downregulates MAPK/ERK but not STAT3 signaling in ROS-dependent and HIF-1-independent manners in mouse embryonic stem cells. Oxidative Medicine and Cellular Longevity. 2017;2017:16. doi: 10.1155/2017/4386947.4386947 PubMed DOI PMC
Bunting K. D. Hematopoietic Stem Cell Protocols. Humana Press; 2008. DOI
Fredrickson T. N., Harris A. W. Atlas of Mouse Hematopathology. Taylor & Francis; 2000.
Eliades A., Wareing S., Marinopoulou E., et al. The hemogenic competence of endothelial progenitors is restricted by Runx1 silencing during embryonic development. Cell Reports. 2016;15(10):2185–2199. doi: 10.1016/j.celrep.2016.05.001. PubMed DOI PMC
Morita R., Suzuki M., Kasahara H., et al. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proceedings of the National Academy of Sciences. 2015;112(1):160–165. doi: 10.1073/pnas.1413234112. PubMed DOI PMC
Xu C.-X., Lee T.-J., Sakurai N., et al. ETV2/ER71 regulates hematopoietic regeneration by promoting hematopoietic stem cell proliferation. The Journal of Experimental Medicine. 2017;214(6):1643–1653. doi: 10.1084/jem.20160923. PubMed DOI PMC
Visvader J. E., Fujiwara Y., Orkin S. H. Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes & Development. 1998;12(4):473–479. doi: 10.1101/gad.12.4.473. PubMed DOI PMC
Saiti D., Lacham-Kaplan O. Mouse germ cell development in-vivo and in-vitro. Biomarker Insights. 2007;2:241–252. PubMed PMC
Shalaby F., Rossant J., Yamaguchi T. P., et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376(6535):62–66. doi: 10.1038/376062a0. PubMed DOI
Tsai F. Y., Keller G., Kuo F. C., et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–226. doi: 10.1038/371221a0. PubMed DOI
Kataoka H., Hayashi M., Nakagawa R., et al. Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRα+ primitive mesoderm. Blood. 2011;118(26):6975–6986. doi: 10.1182/blood-2011-05-352658. PubMed DOI
Landry J.-R., Kinston S., Knezevic K., et al. Runx genes are direct targets of Scl/Tal1 in the yolk sac and fetal liver. Blood. 2008;111(6):3005–3014. doi: 10.1182/blood-2007-07-098830. PubMed DOI
Shivdasani R. A., Mayer E. L., Orkin S. H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature. 1995;373(6513):432–434. doi: 10.1038/373432a0. PubMed DOI
Lancrin C., Sroczynska P., Stephenson C., Allen T., Kouskoff V., Lacaud G. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature. 2009;457(7231):892–895. doi: 10.1038/nature07679. PubMed DOI PMC
Zhen F., Lan Y., Yan B., Zhang W., Wen Z. Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms. Development. 2013;140(19):3977–3985. doi: 10.1242/dev.097071. PubMed DOI
Lichtinger M., Ingram R., Hannah R., et al. RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis. The EMBO Journal. 2012;31(22):4318–4333. doi: 10.1038/emboj.2012.275. PubMed DOI PMC
Yokomizo T., Hasegawa K., Ishitobi H., et al. Runx1 is involved in primitive erythropoiesis in the mouse. Blood. 2008;111(8):4075–4080. doi: 10.1182/blood-2007-05-091637. PubMed DOI
Dalmas D. A., Tierney L. A., Zhang C., et al. Effects of p38 MAP kinase inhibitors on the differentiation and maturation of erythroid progenitors. Toxicologic Pathology. 2008;36(7):958–971. doi: 10.1177/0192623308327121. PubMed DOI
Koyano-Nakagawa N., Shi X., Rasmussen T. L., Das S., Walter C. A., Garry D. J. Feedback mechanisms regulate Ets variant 2 (Etv2) gene expression and hematoendothelial lineages. Journal of Biological Chemistry. 2015;290(47):28107–28119. doi: 10.1074/jbc.M115.662197. PubMed DOI PMC
Weiss M. J., Keller G., Orkin S. H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes & Development. 1994;8(10):1184–1197. doi: 10.1101/gad.8.10.1184. PubMed DOI
Pevny L., Simon M. C., Robertson E., et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature. 1991;349(6306):257–260. doi: 10.1038/349257a0. PubMed DOI
Zhao W., Kitidis C., Fleming M. D., Lodish H. F., Ghaffari S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood. 2006;107(3):907–915. doi: 10.1182/blood-2005-06-2516. PubMed DOI PMC
Smith L. T., Hohaus S., Gonzalez D. A., Dziennis S. E., Tenen D. G. PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony- stimulating factor receptor promoter in myeloid cells. Blood. 1996;88(4):1234–1247. PubMed
Dahl R., Walsh J. C., Lancki D., et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nature Immunology. 2003;4(10):1029–1036. doi: 10.1038/ni973. PubMed DOI
Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical Journal. 2000;351(1):95–105. doi: 10.1042/bj3510095. Pt 1. PubMed DOI PMC
Guo Y.-L., Ye J., Huang F. p38alpha MAP kinase-deficient mouse embryonic stem cells can differentiate to endothelial cells, smooth muscle cells, and neurons. Developmental Dynamics. 2007;236(12):3383–3392. doi: 10.1002/dvdy.21374. PubMed DOI
Aouadi M., Bost F., Caron L., Laurent K., Le Marchand Brustel Y., Binétruy B. p38 mitogen-activated protein kinase activity commits embryonic stem cells to either neurogenesis or cardiomyogenesis. Stem Cells. 2006;24(5):1399–1406. doi: 10.1634/stemcells.2005-0398. PubMed DOI
Alsadeq A., Strube S., Krause S., et al. Effects of p38α/β inhibition on acute lymphoblastic leukemia proliferation and survival in vivo. Leukemia. 2015;29(12):2307–2316. doi: 10.1038/leu.2015.153. PubMed DOI PMC
Fiore M., Forli S., Manetti F. Targeting mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2, MK2): medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. Journal of Medicinal Chemistry. 2016;59(8):3609–3634. doi: 10.1021/acs.jmedchem.5b01457. PubMed DOI PMC
Salomé M., Magee A., Yalla K., et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death & Disease. 2018;9(5):p. 443. doi: 10.1038/s41419-018-0467-3. PubMed DOI PMC
Carey A., Garg S., Cleary M. M., et al. p38MAPK inhibition blocks inflammatory signaling in acute myeloid leukemia. Blood. 2015;126(23):p. 2603.