Dual specificity phosphatase 7 drives the formation of cardiac mesoderm in mouse embryonic stem cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36227898
PubMed Central
PMC9560500
DOI
10.1371/journal.pone.0275860
PII: PONE-D-22-10089
Knihovny.cz E-zdroje
- MeSH
- fosfatasa 1 s dvojí specificitou metabolismus MeSH
- fosfatasy s dvojí specifitou genetika metabolismus MeSH
- fosfoserin MeSH
- fosfothreonin MeSH
- fosfotyrosin MeSH
- mezoderm metabolismus MeSH
- mitogenem aktivované proteinkinasy metabolismus MeSH
- myší embryonální kmenové buňky * metabolismus MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Dusp7 protein, mouse MeSH Prohlížeč
- fosfatasa 1 s dvojí specificitou MeSH
- fosfatasy s dvojí specifitou MeSH
- fosfoserin MeSH
- fosfothreonin MeSH
- fosfotyrosin MeSH
- mitogenem aktivované proteinkinasy MeSH
Dual specificity phosphatase 7 (DUSP7) is a protein belonging to a broad group of phosphatases that can dephosphorylate phosphoserine/phosphothreonine as well as phosphotyrosine residues within the same substrate. DUSP7 has been linked to the negative regulation of mitogen activated protein kinases (MAPK), and in particular to the regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). MAPKs play an important role in embryonic development, where their duration, magnitude, and spatiotemporal activity must be strictly controlled by other proteins, among others by DUSPs. In this study, we focused on the effect of DUSP7 depletion on the in vitro differentiation of mouse embryonic stem (ES) cells. We showed that even though DUSP7 knock-out ES cells do retain some of their basic characteristics, when it comes to differentiation, they preferentially differentiate towards neural cells, while the formation of early cardiac mesoderm is repressed. Therefore, our data indicate that DUSP7 is necessary for the correct formation of neuroectoderm and cardiac mesoderm during the in vitro differentiation of ES cells.
Zobrazit více v PubMed
Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001;410. doi: 10.1038/35065000 PubMed DOI
Rose BA, Force T, Wang Y. Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale. Physiological Reviews 2010;90:1507–46. doi: 10.1152/physrev.00054.2009 PubMed DOI PMC
Yoon S, Seger R. The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors 2006;24. doi: 10.1080/02699050500284218 PubMed DOI
Huang P, Han J, Hui L. MAPK signaling in inflammation-associated cancer development. Protein & Cell 2010;1. doi: 10.1007/s13238-010-0019-9 PubMed DOI PMC
Roskoski R. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacological Research 2012;66:105–43. doi: 10.1016/j.phrs.2012.04.005 PubMed DOI
Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Current Opinion in Genetics & Development 1994;4:82–9. 10.1016/0959-437X(94)90095-7. PubMed DOI
Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases: a gene family for control of MAP kinase function. The FASEB Journal 2000;14:6–16. 10.1096/fasebj.14.1.6. PubMed DOI
Li Z, Fei T, Zhang J, Zhu G, Wang L, Lu D, et al.. BMP4 Signaling Acts via Dual-Specificity Phosphatase 9 to Control ERK Activity in Mouse Embryonic Stem Cells. Cell Stem Cell 2012;10:171–82. doi: 10.1016/j.stem.2011.12.016 PubMed DOI
Jiapaer Z, Li G, Ye D, Bai M, Li J, Guo X, et al.. LincU Preserves Naïve Pluripotency by Restricting ERK Activity in Embryonic Stem Cells. Stem Cell Reports 2018;11:395–409. doi: 10.1016/j.stemcr.2018.06.010 PubMed DOI PMC
Choi J, Clement K, Huebner AJ, Webster J, Rose CM, Brumbaugh J, et al.. DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell 2017;20:706–719.e7. doi: 10.1016/j.stem.2017.03.002 PubMed DOI PMC
Muda M, Boschert U, Dickinson R, Martinou J-C, Martinou I, Camps M, et al.. MKP-3, a Novel Cytosolic Protein-tyrosine Phosphatase That Exemplifies a New Class of Mitogen-activated Protein Kinase Phosphatase. Journal of Biological Chemistry 1996;271:4319–26. doi: 10.1074/jbc.271.8.4319 PubMed DOI
Marques SR, Lee Y, Poss KD, Yelon D. Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart. Developmental Biology 2008;321:397–406. doi: 10.1016/j.ydbio.2008.06.033 PubMed DOI PMC
Lang R, Raffi F. Dual-Specificity Phosphatases in Immunity and Infection: An Update. International Journal of Molecular Sciences 2019;20:2710. doi: 10.3390/ijms20112710 PubMed DOI PMC
Ruvolo PP. Role of protein phosphatases in the cancer microenvironment. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research 2019;1866:144–52. doi: 10.1016/j.bbamcr.2018.07.006 PubMed DOI
Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, et al.. Catalytic Activation of the Phosphatase MKP-3 by ERK2 Mitogen-Activated Protein Kinase. Science (1979) 1998;280:1262–5. doi: 10.1126/science.280.5367.1262 PubMed DOI
Levy-Nissenbaum O, Sagi-Assif O, Raanani P, Avigdor A, Ben-Bassat I, Witz PI. cDNA Microarray Analysis Reveals an Overexpression of the Dual-Specificity MAPK Phosphatase PYST2 in Acute Leukemia, 2003. 10.1016/S0076-6879(03)66009-X. PubMed DOI
Levy-Nissenbaum O, Sagi-Assif O, Raanani P, Avigdor A, Ben-Bassat I, Witz PI. Overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukaemia. Cancer Letters 2003;199. 10.1016/S0304-3835(03)00352-5. PubMed DOI
Levy-Nissenbaum O, Sagi-Assif O, Kapon D, Hantisteanu S, Burg T, Raanani P, et al.. Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene 2003;22. doi: 10.1038/sj.onc.1206971 PubMed DOI
Peng W, Huang J, Yang L, Gong A, Mo Y-Y. Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Molecular Cancer 2017;16. doi: 10.1186/s12943-017-0727-3 PubMed DOI PMC
Luan T, Zhang X, Wang S, Song Y, Zhou S, Lin J, et al.. Long non-coding RNA MIAT promotes breast cancer progression and functions as ceRNA to regulate DUSP7 expression by sponging miR-155-5p. Oncotarget 2017;8. doi: 10.18632/oncotarget.19190 PubMed DOI PMC
Lountos GT, Austin BP, Tropea JE, Waugh DS. Structure of human dual-specificity phosphatase 7, a potential cancer drug target. Acta Crystallographica Section F Structural Biology Communications 2015;71:650–6. doi: 10.1107/S2053230X1500504X PubMed DOI PMC
Radaszkiewicz KA, Beckerová D, Woloszczuková L, Radaszkiewicz TW, Lesáková P, Blanářová OV, et al.. 12-O-Tetradecanoylphorbol-13-acetate increases cardiomyogenesis through PKC/ERK signaling. Scientific Reports 2020;10:15922. doi: 10.1038/s41598-020-73074-4 PubMed DOI PMC
Radaszkiewicz KA, Sýkorová D, Binó L, Kudová J, Bébarová M, Procházková J, et al.. The acceleration of cardiomyogenesis in embryonic stem cells in vitro by serum depletion does not increase the number of developed cardiomyocytes. PLOS ONE 2017;12:e0173140. doi: 10.1371/journal.pone.0173140 PubMed DOI PMC
Andersson-Rolf A, Merenda A, Mustata RC, Li T, Dietmann S, Koo B-K. Simultaneous paralogue knockout using a CRISPR-concatemer in mouse small intestinal organoids. Developmental Biology 2016;420:271–7. doi: 10.1016/j.ydbio.2016.10.016 PubMed DOI PMC
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science (1979) 2012;337:816–21. doi: 10.1126/science.1225829 PubMed DOI PMC
Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research 2019;47:W171–4. doi: 10.1093/nar/gkz365 PubMed DOI PMC
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 2013;8:2281–308. doi: 10.1038/nprot.2013.143 PubMed DOI PMC
Malcikova J, Stano-Kozubik K, Tichy B, Kantorova B, Pavlova S, Tom N, et al.. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia 2015;29:877–85. doi: 10.1038/leu.2014.297 PubMed DOI PMC
Navrátilová J, Karasová M, Kohutková Lánová M, Jiráková L, Budková Z, Pacherník J, et al.. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate. Journal of Cellular and Molecular Medicine 2017;21:1859–69. doi: 10.1111/jcmm.13106 PubMed DOI PMC
Kučera J, Netušilová J, Sladeček S, Lánová M, Vašíček O, Štefková K, et al.. Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells. Oxidative Medicine and Cellular Longevity 2017;2017:1–16. 10.1155/2017/4386947. PubMed DOI PMC
Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al.. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology 2015;33:543–8. doi: 10.1038/nbt.3198 PubMed DOI
Pan GJ, Chang ZY, Scholer HR, Pei D. Stem cell pluripotency and transcription factor Oct4. Cell Research 2002;12:321–9. doi: 10.1038/sj.cr.7290134 PubMed DOI
Pan G, Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Research 2007;17:42–9. doi: 10.1038/sj.cr.7310125 PubMed DOI
Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006;126:663–76. doi: 10.1016/j.cell.2006.07.024 PubMed DOI
Martello G, Bertone P, Smith A. Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. The EMBO Journal 2013;32:2561–74. doi: 10.1038/emboj.2013.177 PubMed DOI PMC
Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G, Rathjen PD. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 1999;112 (Pt 5):601–12. doi: 10.1242/jcs.112.5.601 PubMed DOI
Kitajima S, Takagi A, Inoue T, Saga Y. MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 2000;127:3215–26. doi: 10.1242/dev.127.15.3215 PubMed DOI
Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, et al.. Mesp1 Acts as a Master Regulator of Multipotent Cardiovascular Progenitor Specification. Cell Stem Cell 2008;3:69–84. doi: 10.1016/j.stem.2008.06.009 PubMed DOI
Lin Q, Schwarz J, Bucana C.N., Olson E. Control of Mouse Cardiac Morphogenesis and Myogenesis by Transcription Factor MEF2C. Science (1979) 1997;276:1404–7. doi: 10.1126/science.276.5317.1404 PubMed DOI PMC
Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes & Development 1997;11:1061–72. doi: 10.1101/gad.11.8.1061 PubMed DOI
Lentjes MH, Niessen HE, Akiyama Y, de Bruïne AP, Melotte V, van Engeland M. The emerging role of GATA transcription factors in development and disease. Expert Reviews in Molecular Medicine 2016;18:e3. doi: 10.1017/erm.2016.2 PubMed DOI PMC
Pekkanen-Mattila M, Pelto-Huikko M, Kujala V, Suuronen R, Skottman H, Aalto-Setälä K, et al.. Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies. Histochemistry and Cell Biology 2010;133:595–606. doi: 10.1007/s00418-010-0689-7 PubMed DOI
Slack DN, Seternes O-M, Gabrielsen M, Keyse SM. Distinct Binding Determinants for ERK2/p38α and JNK MAP Kinases Mediate Catalytic Activation and Substrate Selectivity of MAP Kinase Phosphatase-1. Journal of Biological Chemistry 2001;276. 10.1074/jbc.M010966200. PubMed DOI
Brondello JM, Pouysségur J, McKenzie FR. Reduced MAP kinase phosphatase-1 degradation after p42/p44(MAPK)- dependent phosphorylation. Science (1979) 1999;286:2514–7. 10.1126/science.286.5449.2514. PubMed DOI
Bandyopadhyay S, Chiang C, Srivastava J, Gersten M, White S, Bell R, et al.. A human MAP kinase interactome. Nature Methods 2010;7:801–5. doi: 10.1038/nmeth.1506 PubMed DOI PMC
Kamakura S, Moriguchi T, Nishida E. Activation of the Protein Kinase ERK5/BMK1 by Receptor Tyrosine Kinases. Journal of Biological Chemistry 1999;274:26563–71. 10.1074/jbc.274.37.26563. PubMed DOI
Arkell RS, Dickinson RJ, Squires M, Hayat S, Keyse SM, Cook SJ. DUSP6/MKP-3 inactivates ERK1/2 but fails to bind and inactivate ERK5. Cellular Signalling 2008;20:836–43. doi: 10.1016/j.cellsig.2007.12.014 PubMed DOI
Bermudez O, Pagès G, Gimond C. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. American Journal of Physiology-Cell Physiology 2010;299:C189–202. doi: 10.1152/ajpcell.00347.2009 PubMed DOI
Caunt CJ, Keyse SM. Dual‐specificity MAP kinase phosphatases (MKPs). The FEBS Journal 2013;280:489–504. 10.1111/j.1742-4658.2012.08716.x. PubMed DOI PMC
Caunt CJ, Armstrong SP, Rivers CA, Norman MR, McArdle CA. Spatiotemporal Regulation of ERK2 by Dual Specificity Phosphatases. Journal of Biological Chemistry 2008;283:26612–23. doi: 10.1074/jbc.M801500200 PubMed DOI PMC
Dowd S, Sneddon AA, Keyse SM. Isolation of the human genes encoding the pyst1 and Pyst2 phosphatases: characterisation of Pyst2 as a cytosolic dual-specificity MAP kinase phosphatase and its catalytic activation by both MAP and SAP kinases. J Cell Sci 1998;111 (Pt 22). doi: 10.1242/jcs.111.22.3389 PubMed DOI
Levy-Nissenbaum O, Barak E, Burg-Golani T, Sagi-Assif O, Kloog Y, Witz P. I. Does the dual-specificity MAPK phosphatase Pyst2-L lead a monogamous relationship with the Erk2 protein? Immunology Letters 2004;92. 10.1016/j.imlet.2003.11.024. PubMed DOI
Tischer T, Schuh M. The Phosphatase Dusp7 Drives Meiotic Resumption and Chromosome Alignment in Mouse Oocytes. Cell Reports 2016;17. doi: 10.1016/j.celrep.2016.10.007 PubMed DOI PMC
Matsuda T. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. The EMBO Journal 1999;18:4261–9. doi: 10.1093/emboj/18.15.4261 PubMed DOI PMC
Burdon T, Stracey C, Chambers I, Nichols J, Smith A. Suppression of SHP-2 and ERK Signalling Promotes Self-Renewal of Mouse Embryonic Stem Cells. Developmental Biology 1999;210:30–43. doi: 10.1006/dbio.1999.9265 PubMed DOI
Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 2009;460:118–22. doi: 10.1038/nature08113 PubMed DOI
Chappell J, Sun Y, Singh A, Dalton S. MYC/MAX control ERK signaling and pluripotency by regulation of dual-specificity phosphatases 2 and 7. Genes & Development 2013;27. doi: 10.1101/gad.211300.112 PubMed DOI PMC
Liu Y, Chen L, Diaz AD, Benham A, Xu X, Wijaya CS, et al.. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts. Scientific Reports 2016;6:31457. doi: 10.1038/srep31457 PubMed DOI PMC
Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, et al.. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes & Development 1997;11:1048–60. doi: 10.1101/gad.11.8.1048 PubMed DOI
Yilbas AE, Hamilton A, Wang Y, Mach H, Lacroix N, Davis DR, et al.. Activation of GATA4 gene expression at the early stage of cardiac specification. Frontiers in Chemistry 2014;2. doi: 10.3389/fchem.2014.00012 PubMed DOI PMC
Vincentz JW, Barnes RM, Firulli BA, Conway SJ, Firulli AB. Cooperative interaction of Nkx2.5 and Mef2c transcription factors during heart development. Developmental Dynamics 2008;237:3809–19. 10.1002/dvdy.21803. PubMed DOI PMC
Edmondson DG, Lyons GE, Martin JF, Olson EN. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 1994;120:1251–63. doi: 10.1242/dev.120.5.1251 PubMed DOI
Lin X, Shah S, Bulleit RF. The expression of MEF2 genes is implicated in CNS neuronal differentiation. Molecular Brain Research 1996;42:307–16. doi: 10.1016/s0169-328x(96)00135-0 PubMed DOI
Li H, Radford JC, Ragusa MJ, Shea KL, McKercher SR, Zaremba JD, et al.. Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proceedings of the National Academy of Sciences 2008;105:9397–402. doi: 10.1073/pnas.0802876105 PubMed DOI PMC
Štefková K, Hanáčková M, Kučera J, Radaszkiewicz KA, Ambrůžová B, Kubala L, et al.. MAPK p38alpha Kinase Influences Haematopoiesis in Embryonic Stem Cells. Stem Cells International 2019;2019:1–16. doi: 10.1155/2019/5128135 PubMed DOI PMC
Misra-Press A, Rim CS, Yao H, Roberson MS, Stork PJS. A Novel Mitogen-activated Protein Kinase Phosphatase. STRUCTURE, EXPRESSION, AND REGULATION. Journal of Biological Chemistry 1995;270:14587–96. doi: 10.1074/jbc.270.24.14587 PubMed DOI
Pérez-Sen Queipo, Gil-Redondo Ortega, Gómez-Villafuertes Miras-Portugal, et al.. Dual-Specificity Phosphatase Regulation in Neurons and Glial Cells. International Journal of Molecular Sciences 2019;20:1999. doi: 10.3390/ijms20081999 PubMed DOI PMC
Jeanneteau F, Deinhardt K, Miyoshi G, Bennett AM, Chao M v. The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nature Neuroscience 2010;13:1373–9. 10.1038/nn.2655. PubMed DOI PMC
Finelli MJ, Murphy KJ, Chen L, Zou H. Differential Phosphorylation of Smad1 Integrates BMP and Neurotrophin Pathways through Erk/Dusp in Axon Development. Cell Reports 2013;3:1592–606. doi: 10.1016/j.celrep.2013.04.011 PubMed DOI PMC
Collins LM O ’Keeffe GW, Long-Smith CM, Wyatt SL, Sullivan AM, Toulouse A, et al.. Mitogen-Activated Protein Kinase Phosphatase (MKP)-1 as a Neuroprotective Agent: Promotion of the Morphological Development of Midbrain Dopaminergic Neurons. NeuroMolecular Medicine 2013;15:435–46. doi: 10.1007/s12017-013-8230-5 PubMed DOI
Koga S, Kojima S, Kishimoto T, Kuwabara S, Yamaguchi A. Over-expression of map kinase phosphatase-1 (MKP-1) suppresses neuronal death through regulating JNK signaling in hypoxia/re-oxygenation. Brain Research 2012;1436:137–46. doi: 10.1016/j.brainres.2011.12.004 PubMed DOI
Chandrasekhar A, Komirishetty P, Areti A, Krishnan A, Zochodne DW. Dual Specificity Phosphatases Support Axon Plasticity and Viability. Molecular Neurobiology 2021;58:391–407. doi: 10.1007/s12035-020-02119-6 PubMed DOI
Sokolov BP, Polesskaya OO, Uhl GR. Mouse brain gene expression changes after acute and chronic amphetamine. Journal of Neurochemistry 2003;84:244–52. doi: 10.1046/j.1471-4159.2003.01523.x PubMed DOI
Dunwoodie SL. Combinatorial signaling in the heart orchestrates cardiac induction, lineage specification and chamber formation. Seminars in Cell & Developmental Biology 2007;18:54–66. doi: 10.1016/j.semcdb.2006.12.003 PubMed DOI
Jin Y, Calvert TJ, Chen B, Chicoine LG, Joshi M, Bauer JA, et al.. Mice deficient in Mkp-1 develop more severe pulmonary hypertension and greater lung protein levels of arginase in response to chronic hypoxia. American Journal of Physiology-Heart and Circulatory Physiology 2010;298:H1518–28. 10.1152/ajpheart.00813.2009. PubMed DOI PMC
Missinato MA, Saydmohammed M, Zuppo DA, Rao KS, Opie GW, Kühn B, et al.. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development 2018. doi: 10.1242/dev.157206 PubMed DOI PMC
Liu R, van Berlo JH, York AJ, Vagnozzi RJ, Maillet M, Molkentin JD. DUSP8 Regulates Cardiac Ventricular Remodeling by Altering ERK1/2 Signaling. Circulation Research 2016;119:249–60. doi: 10.1161/CIRCRESAHA.115.308238 PubMed DOI PMC
Maillet M, Purcell NH, Sargent MA, York AJ, Bueno OF, Molkentin JD. DUSP6 (MKP3) Null Mice Show Enhanced ERK1/2 Phosphorylation at Baseline and Increased Myocyte Proliferation in the Heart Affecting Disease Susceptibility. Journal of Biological Chemistry 2008;283:31246–55. 10.1074/jbc.M806085200. PubMed DOI PMC
Auger-Messier M, Accornero F, Goonasekera SA, Bueno OF, Lorenz JN, van Berlo JH, et al.. Unrestrained p38 MAPK Activation in Dusp1/4 Double-Null Mice Induces Cardiomyopathy. Circulation Research 2013;112:48–56. 10.1161/CIRCRESAHA.112.272963. PubMed DOI PMC
Wu L, Liu Y, Zhao Y, Li M, Guo L. Targeting DUSP7 signaling alleviates hepatic steatosis, inflammation and oxidative stress in high fat diet (HFD)-fed mice via suppression of TAK1. Free Radical Biology and Medicine 2020;153. doi: 10.1016/j.freeradbiomed.2020.04.009 PubMed DOI