Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28736753
PubMed Central
PMC5508474
DOI
10.1016/j.heliyon.2017.e00353
PII: S2405-8440(17)31474-3
Knihovny.cz E-zdroje
- Klíčová slova
- Evolution, Genetics, Infectious disease, Public health, Veterinary science, Virology,
- Publikační typ
- časopisecké články MeSH
Crimean-Congo hemorrhagic fever (CCHF) is an emerging tick-borne zoonotic disease caused by the CCHF virus (CCHFV). In this study, an experimental approach combining RT-PCR and proteomics was used for the identification and characterization of CCHFV in 106 ticks from 7 species that were collected from small ruminants in Greece. The methodological approach included an initial screening for CCHFV by RT-PCR followed by proteomics analysis of positive and control negative tick samples. This novel approach allowed the identification of CCHFV-positive ticks and provided additional information to corroborate the RT-PCR findings using a different approach. Two ticks, Dermacentor marginatus and Haemaphysalis parva collected from a goat and a sheep, respectively were positive for CCHFV. The sequences for CCHFV RNA segments S and L were characterized by RT-PCR and proteomics analysis of tick samples, respectively. These results showed the possibility of combining analyses at the RNA and protein levels using RT-PCR and proteomics for the characterization of CCHFV in ticks. The results supported that the CCHFV identified in ticks are genetic variants of the AP92 strain. Although the AP92-like strains probably do not represent a high risk of CCHF to the population, the circulation of genetically diverse CCHFV strains could potentially result in the appearance of novel viral genotypes with increased pathogenicity and fitness.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
SaBio Instituto de Investigación de Recursos Cinegéticos IREC CSIC UCLM JCCM 13005 Ciudad Real Spain
Zobrazit více v PubMed
Albayrak H., Ozan E., Kurt M. An antigenic investigation of Crimean-Congo hemorrhagic fever virus (CCHFV) in hard ticks from provinces in northern Turkey. Trop. Anim. Health Prod. 2010;42:1323–1325. PubMed
Anagnostou V., Papa A. Evolution of Crimean-Congo Hemorrhagic Fever virus. Infect. Genet. Evol. 2009;9:948–954. PubMed
Aradaib I.E., Erickson B.R., Karsany M.S., Khristova M.L., Elageb R.M., Mohamed M.E., Nichol S.T. Multiple Crimean-Congo hemorrhagic fever virus strains are associated with disease outbreaks in Sudan, 2008–2009. PLoS Negl. Trop. Dis. 2011;5 PubMed PMC
Bente D.A., Forrester N.L., Watts D.M., McAuley A.J., Whitehouse C.A., Bray M. Crimean-Congo hemorrhagic fever: history epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100:159–189. PubMed
de la Fuente J., Antunes S., Bonnet S., Cabezas-Cruz A., Domingos A., Estrada-Peña A., Johnson N., Kocan K.M., Mansfield K.L., Nijhof A., Papa A., Rudenko N., Villar M., Alberdi P., Torina A., Ayllón N., Vancová M., Golovchenko M., Grubhoffer L., Caracappa S., Fooks A.R., Gortazar C., Rego R.O.M. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 2017;7:114. PubMed PMC
Dickson D.L., Turell M.J. Replication and tissue tropisms of Crimean-Congo hemorrhagic fever virus in experimentally infected adult Hyalomma truncatum (Acari: Iodide) J. Med. Entomol. 1992;29(5):767–773. PubMed
Ergonul O. Crimean-Congo haemorrhagic fever. Lancet Infect. Dis. 2006;6:203–214. PubMed PMC
Estrada-Peña A., Ruiz-Fons F., Acevedo P., Gortazar C., de la Fuente J. Factors driving the circulation and possible expansion of Crimean–Congo haemorrhagic fever virus in the western Palearctic. J. Appl. Microbiol. 2013;114:278–286. PubMed
Hekimoglu O., Ozer N., Ergunay K., Ozkul A. Species distribution and detection of Crimean Congo Hemorrhagic Fever Virus (CCHFV) in field-collected ticks in Ankara Province, Central Anatolia, Turkey. Exp. Appl. Acarol. 2012;56:75–84. PubMed
Manilla G. Edizioni Calderini; Bologna, Italy: 1998. Fauna d'ltalia Acari: Ixodida.
Martina B., Barzon L., Pijlman G.P., de la Fuente J., Rizzoli A., Wammes L.J., Takken W., van Rij R.P., Papa A. Human to human transmission of arthropod-borne pathogens. Curr. Opin. Virol. 2017;22:13–21. PubMed
Midilli K., Gargili A., Ergonul O., Elevli M., Ergin S., Turan N., Sengöz G., Ozturk R., Bakar M. The first clinical case due to AP92 like strain of Crimean-Congo Hemorrhagic Fever virus and a field survey. BMC Infect. Dis. 2009;9:90. PubMed PMC
Osman H.A., Eltom K.H., Musa N.O., Bilal N.M., Elbashir M.I., Aradaib I.E. Development and evaluation of loop-mediated isothermal amplification assay for detection of Crimean Congo hemorrhagic fever virus in Sudan. J. Virol. Methods. 2013;190:4–10. PubMed
Papa A., Chaligiannis I., Kontana N., Sourba T., Tsioka K., Tsatsaris A., Sotiraki S. A novel AP92-like Crimean-Congo hemorrhagic fever virus strain, Greece. Ticks Tick Borne Dis. 2014;5:590–593. PubMed
Papa A., Mirazimi A., Köksal I., Estrada-Peña A., Feldmann H. Recent advances in research on Crimean-Congo hemorrhagic fever. J. Clin. Virol. 2015;64:137–143. PubMed PMC
Papa A., Weber F., Hewson R., Weidmann M., Koksal I., Korukluoglu G., Mirazimi A. Meeting report: First International Conference on Crimean-Congo hemorrhagic fever. Antiviral Res. 2015;120:57–65. PubMed
Papa A., Tsergouli K., Tsioka K., Mirazimi A. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions. Front. Cell. Infect. Microbiol. 2017;7:213. PubMed PMC
Salehi-Vaziri M., Baniasadi V., Jalali T., Mirghiasi S.M., Azad-Manjiri S., Zarandi R., Mohammadi T., Khakifirouz S., Fazlalipour M. The first fatal case of Crimean-Congo Hemorrhagic Fever caused by the AP92-like strain of the Crimean-Congo Hemorrhagic Fever virus. Jpn. J. Infect. Dis. 2016;69:344–346. PubMed
Schuster I., Mertens M., Mrenoshki S., Staubach C., Mertens C., Brüning F., Wernike K., Hechinger S., Berxholi K., Mitrov D., Groschup M.H. Sheep and goats as indicator animals for the circulation of CCHFV in the environment. Exp. Appl. Acarol. 2016;68:337–346. PubMed PMC
Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. PubMed PMC
Villar M., Ayllón N., Alberdi P., Moreno A., Moreno M., Tobes R., Mateos-Hernandez L., Weisheit S., Bell-Sakyi L., de la Fuente J. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol. Cell. Proteomics. 2015;14:3154–3172. PubMed PMC
Walker P.J., Widen S.G., Firth C., Blasdell K.R., Wood T.G., Travassos da Rosa A.P., Guzman H., Tesh R.B., Vasilakis N. Genomic characterization of Yogue, Kasokero, Issyk-Kul, Keterah, Gossas, and Thiafora Viruses Nairoviruses naturally infecting bats, shrews, and ticks. Am. J. Trop. Med. Hyg. 2015;93:1041–1051. PubMed PMC
Xia H., Beck A.S., Gargili A., Forrester N., Barrett A.D., Bente D.A. Transstadial transmission and long-term association of Crimean-Congo hemorrhagic fever virus in ticks shapes genome plasticity. Sci. Rep. 2016;6:35819. PubMed PMC
Crimean-Congo haemorrhagic fever virus in ticks, domestic, and wild animals