Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks

. 2017 Jul ; 3 (7) : e00353. [epub] 20170712

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28736753
Odkazy

PubMed 28736753
PubMed Central PMC5508474
DOI 10.1016/j.heliyon.2017.e00353
PII: S2405-8440(17)31474-3
Knihovny.cz E-zdroje

Crimean-Congo hemorrhagic fever (CCHF) is an emerging tick-borne zoonotic disease caused by the CCHF virus (CCHFV). In this study, an experimental approach combining RT-PCR and proteomics was used for the identification and characterization of CCHFV in 106 ticks from 7 species that were collected from small ruminants in Greece. The methodological approach included an initial screening for CCHFV by RT-PCR followed by proteomics analysis of positive and control negative tick samples. This novel approach allowed the identification of CCHFV-positive ticks and provided additional information to corroborate the RT-PCR findings using a different approach. Two ticks, Dermacentor marginatus and Haemaphysalis parva collected from a goat and a sheep, respectively were positive for CCHFV. The sequences for CCHFV RNA segments S and L were characterized by RT-PCR and proteomics analysis of tick samples, respectively. These results showed the possibility of combining analyses at the RNA and protein levels using RT-PCR and proteomics for the characterization of CCHFV in ticks. The results supported that the CCHFV identified in ticks are genetic variants of the AP92 strain. Although the AP92-like strains probably do not represent a high risk of CCHF to the population, the circulation of genetically diverse CCHFV strains could potentially result in the appearance of novel viral genotypes with increased pathogenicity and fitness.

Zobrazit více v PubMed

Albayrak H., Ozan E., Kurt M. An antigenic investigation of Crimean-Congo hemorrhagic fever virus (CCHFV) in hard ticks from provinces in northern Turkey. Trop. Anim. Health Prod. 2010;42:1323–1325. PubMed

Anagnostou V., Papa A. Evolution of Crimean-Congo Hemorrhagic Fever virus. Infect. Genet. Evol. 2009;9:948–954. PubMed

Aradaib I.E., Erickson B.R., Karsany M.S., Khristova M.L., Elageb R.M., Mohamed M.E., Nichol S.T. Multiple Crimean-Congo hemorrhagic fever virus strains are associated with disease outbreaks in Sudan, 2008–2009. PLoS Negl. Trop. Dis. 2011;5 PubMed PMC

Bente D.A., Forrester N.L., Watts D.M., McAuley A.J., Whitehouse C.A., Bray M. Crimean-Congo hemorrhagic fever: history epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100:159–189. PubMed

de la Fuente J., Antunes S., Bonnet S., Cabezas-Cruz A., Domingos A., Estrada-Peña A., Johnson N., Kocan K.M., Mansfield K.L., Nijhof A., Papa A., Rudenko N., Villar M., Alberdi P., Torina A., Ayllón N., Vancová M., Golovchenko M., Grubhoffer L., Caracappa S., Fooks A.R., Gortazar C., Rego R.O.M. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 2017;7:114. PubMed PMC

Dickson D.L., Turell M.J. Replication and tissue tropisms of Crimean-Congo hemorrhagic fever virus in experimentally infected adult Hyalomma truncatum (Acari: Iodide) J. Med. Entomol. 1992;29(5):767–773. PubMed

Ergonul O. Crimean-Congo haemorrhagic fever. Lancet Infect. Dis. 2006;6:203–214. PubMed PMC

Estrada-Peña A., Ruiz-Fons F., Acevedo P., Gortazar C., de la Fuente J. Factors driving the circulation and possible expansion of Crimean–Congo haemorrhagic fever virus in the western Palearctic. J. Appl. Microbiol. 2013;114:278–286. PubMed

Hekimoglu O., Ozer N., Ergunay K., Ozkul A. Species distribution and detection of Crimean Congo Hemorrhagic Fever Virus (CCHFV) in field-collected ticks in Ankara Province, Central Anatolia, Turkey. Exp. Appl. Acarol. 2012;56:75–84. PubMed

Manilla G. Edizioni Calderini; Bologna, Italy: 1998. Fauna d'ltalia Acari: Ixodida.

Martina B., Barzon L., Pijlman G.P., de la Fuente J., Rizzoli A., Wammes L.J., Takken W., van Rij R.P., Papa A. Human to human transmission of arthropod-borne pathogens. Curr. Opin. Virol. 2017;22:13–21. PubMed

Midilli K., Gargili A., Ergonul O., Elevli M., Ergin S., Turan N., Sengöz G., Ozturk R., Bakar M. The first clinical case due to AP92 like strain of Crimean-Congo Hemorrhagic Fever virus and a field survey. BMC Infect. Dis. 2009;9:90. PubMed PMC

Osman H.A., Eltom K.H., Musa N.O., Bilal N.M., Elbashir M.I., Aradaib I.E. Development and evaluation of loop-mediated isothermal amplification assay for detection of Crimean Congo hemorrhagic fever virus in Sudan. J. Virol. Methods. 2013;190:4–10. PubMed

Papa A., Chaligiannis I., Kontana N., Sourba T., Tsioka K., Tsatsaris A., Sotiraki S. A novel AP92-like Crimean-Congo hemorrhagic fever virus strain, Greece. Ticks Tick Borne Dis. 2014;5:590–593. PubMed

Papa A., Mirazimi A., Köksal I., Estrada-Peña A., Feldmann H. Recent advances in research on Crimean-Congo hemorrhagic fever. J. Clin. Virol. 2015;64:137–143. PubMed PMC

Papa A., Weber F., Hewson R., Weidmann M., Koksal I., Korukluoglu G., Mirazimi A. Meeting report: First International Conference on Crimean-Congo hemorrhagic fever. Antiviral Res. 2015;120:57–65. PubMed

Papa A., Tsergouli K., Tsioka K., Mirazimi A. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions. Front. Cell. Infect. Microbiol. 2017;7:213. PubMed PMC

Salehi-Vaziri M., Baniasadi V., Jalali T., Mirghiasi S.M., Azad-Manjiri S., Zarandi R., Mohammadi T., Khakifirouz S., Fazlalipour M. The first fatal case of Crimean-Congo Hemorrhagic Fever caused by the AP92-like strain of the Crimean-Congo Hemorrhagic Fever virus. Jpn. J. Infect. Dis. 2016;69:344–346. PubMed

Schuster I., Mertens M., Mrenoshki S., Staubach C., Mertens C., Brüning F., Wernike K., Hechinger S., Berxholi K., Mitrov D., Groschup M.H. Sheep and goats as indicator animals for the circulation of CCHFV in the environment. Exp. Appl. Acarol. 2016;68:337–346. PubMed PMC

Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. PubMed PMC

Villar M., Ayllón N., Alberdi P., Moreno A., Moreno M., Tobes R., Mateos-Hernandez L., Weisheit S., Bell-Sakyi L., de la Fuente J. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol. Cell. Proteomics. 2015;14:3154–3172. PubMed PMC

Walker P.J., Widen S.G., Firth C., Blasdell K.R., Wood T.G., Travassos da Rosa A.P., Guzman H., Tesh R.B., Vasilakis N. Genomic characterization of Yogue, Kasokero, Issyk-Kul, Keterah, Gossas, and Thiafora Viruses Nairoviruses naturally infecting bats, shrews, and ticks. Am. J. Trop. Med. Hyg. 2015;93:1041–1051. PubMed PMC

Xia H., Beck A.S., Gargili A., Forrester N., Barrett A.D., Bente D.A. Transstadial transmission and long-term association of Crimean-Congo hemorrhagic fever virus in ticks shapes genome plasticity. Sci. Rep. 2016;6:35819. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Crimean-Congo haemorrhagic fever virus in ticks, domestic, and wild animals

. 2024 ; 11 () : 1513123. [epub] 20250116

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...