• This record comes from PubMed

Crystal Engineering in Oligorylenes: The Quest for Optimized Crystal Packing and Enhanced Charge Transport

. 2025 May 07 ; 25 (9) : 3087-3099. [epub] 20250423

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

The crystal structures of organic semiconductors are critical when they are integrated into optoelectronic devices, such as organic field-effect transistors (OFETs). In this study, we introduce a crystal engineering approach that leverages weak, nondirectional dispersion forces and steric effects, working together to govern the molecular packing. We investigated how the substitution at the peri-position affects the crystal structure in a series of oligorylene molecules. Upon elucidation of the crystal structures, we found a distinct difference between symmetrical and unsymmetrical derivatives. The unsymmetrical derivatives are prone to forming a sandwich herringbone (SHB) motif, while symmetrical derivatives exhibit a typical herringbone (HB) motif. In most of the rylene derivatives, substitutions at the peri-position triggered an "end-to-face" orientation within the HB structure, rather than an "edge-to-face" orientation, which occurs more often. Results from the Hirschfeld surface analysis provide evidence that the "end-to-face" orientation promotes C-H-π interactions between terminal methyl groups and the π-core of the molecules. While these C-Hmethyl---π interactions contribute to the overall stability of the packing structure, they remain ineffective in enhancing the charge transport properties. In contrast, a particular derivative, tetramethyl perylene (TMP), exhibits a HB structure with an edge-to-face orientation, promoting both C-H---π and π---π interactions. These interactions are crucial for improving the charge carrier mobility, as evidenced by mobility values. For TMP, we could obtain the mobility value of 0.05 cm2 V-1 s-1 in OFETs, whereas a slightly higher mobility of 0.2 cm2 V-1 s-1 was observed with Field-Induced Time-Resolved Microwave conductivity (FI-TRMC) technique.

See more in PubMed

Desiraju G. R.; Gavezzotti A. Crystal Structures of Polynuclear Aromatic Hydrocarbons. Classification, Rationalization and Prediction from Molecular Structure. Acta Crystallographica Section B 1989, 45 (5), 473–482. 10.1107/S0108768189003794. DOI

Desiraju G. R. Crystal Engineering: Solid State Supramolecular Synthesis. Curr. Opin. Solid State Mater. Sci. 1997, 2 (4), 451–454. 10.1016/S1359-0286(97)80088-5. DOI

Desiraju G. R. Designer Crystals: Intermolecular Interactions, Network Structures and Supramolecular Synthons. Chem. Commun. 1997, (16), 1475–1482. 10.1039/a607149j. DOI

Bishop R. Organic Crystal Engineering beyond the Pauling Hydrogen Bond. CrystEngComm 2015, 17 (39), 7448–7460. 10.1039/C5CE01069A. DOI

Solà M. Forty Years of Clar’s Aromatic π-Sextet Rule. Front Chem. 2013, 1, 66422.10.3389/fchem.2013.00022. PubMed DOI PMC

Razus A. C. Azulene Moiety as Electron Reservoir in Positively Charged Systems; a Short Survey. Symmetry 2021, 13 (4), 526.10.3390/sym13040526. DOI

Markiewicz J. T.; Wudl F. Perylene, Oligorylenes, and Aza-Analogs. ACS Appl. Mater. Interfaces 2015, 7 (51), 28063–28085. 10.1021/acsami.5b02243. PubMed DOI

Würthner F.; Saha-Möller C. R.; Fimmel B.; Ogi S.; Leowanawat P.; Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem. Rev. 2016, 116 (3), 962–1052. 10.1021/acs.chemrev.5b00188. PubMed DOI

Müllen K. Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience. ACS Nano 2014, 8 (7), 6531–6541. 10.1021/nn503283d. PubMed DOI

Simmons G. L.; Lingafelter E. C. The Crystal Structure of Pyracene. Acta Crystallogr. 1961, 14 (8), 872–874. 10.1107/S0365110X61002515. DOI

Ehrlich H. W. W. A Refinement of the Crystal and Molecular Structure of Acenaphthene. Acta Crystallogr. 1957, 10, 699–705. 10.1107/S0365110X5700242X. DOI

Koch K.-H.; Müllen K. Polyarylenes and Poly(Arylenevinylene)s, V. Synthesis of Tetraalkyl-Substituted Oligo(1,4-Naphthylene)s and Cyclization to Soluble Oligo(Peri-Naphthylene)S2). Chem. Ber. 1991, 124 (9), 2091–2100. 10.1002/cber.19911240935. DOI

Pigulski B.; Ximenis M.; Shoyama K.; Würthner F. Synthesis of Polycyclic Aromatic Hydrocarbons by Palladium-Catalysed [3 + 3] Annulation. Org. Chem. Front. 2020, 7 (19), 2925–2930. 10.1039/D0QO00968G. DOI

Tanaka J. The Electronic Spectra of Aromatic Molecular Crystals. II. The Crystal Structure and Spectra of Perylene. Bull. Chem. Soc. Jpn. 1963, 36 (10), 1237–1249. 10.1246/bcsj.36.1237. DOI

Li T.; Zhang C. Z.; Su Y. X.; Niu M. X.; Gu C. Y.; Song M. X. Crystal Structure and Optoelectronic Properties of Antiaromatic Compound 3,4,9,10-Tetrahydrodicyclopenta[Cd,Lm]Perylene. Crystallography Reports 2017, 62 (6), 885–888. 10.1134/S1063774517060165. DOI

Anderson A. G.; Wade R. H. The Synthesis of Pyracene. J. Am. Chem. Soc. 1952, 74 (9), 2274–2278. 10.1021/ja01129a032. DOI

EatonMillerMarguliesShoerSchaller S. W. S. A. E. A. L. E. R. D.; Wasielewski M. R. S. A.; Margulies E.; Shoer E.; Schaller L. D. R.; Wasielewski R.; Singlet M. Singlet Exciton Fission in Thin Films of tert-Butyl-Substituted Terrylenes. J. Phys. Chem. A 2015, 119 (18), 4151–4161. 10.1021/acs.jpca.5b02719. PubMed DOI

Pookpanratana S. J.; Goetz K. P.; Bittle E. G.; Haneef H.; You L.; Hacker C. A.; Robey S. W.; Jurchescu O. D.; Ovsyannikov R.; Giangrisostomi E. Electronic Properties and Structure of Single Crystal Perylene. Org. Electron. 2018, 61, 157–163. 10.1016/j.orgel.2018.05.035. PubMed DOI PMC

Pick A.; Klues M.; Rinn A.; Harms K.; Chatterjee S.; Witte G. Polymorph-Selective Preparation and Structural Characterization of Perylene Single Crystals. Cryst. Growth Des. 2015, 15 (11), 5495–5504. 10.1021/acs.cgd.5b01130. DOI

Datta A.; Mohakud S.; Pati S. K. Comparing the Electron and Hole Mobilities in the α and β Phases of Perylene: Role of π-Stacking. J. Mater. Chem. 2007, 17 (19), 1933–1938. 10.1039/B700625J. DOI

Sato K.; Katoh R. Fluorescence Properties of β-Perylene Crystals Prepared by a Physical Vapor Transport Method under Atmospheric Pressure. Chem. Phys. Lett. 2019, 730, 312–315. 10.1016/j.cplett.2019.06.031. DOI

Friedlein R.; Crispin X.; Pickholz M.; Keil M.; Stafström S.; Salaneck W. R. High Intercalation Levels in Lithium Perylene Stoichiometric Compounds. Chem. Phys. Lett. 2002, 354 (5), 389–394. 10.1016/S0009-2614(02)00148-3. DOI

Wang C.; Abbas M.; Wantz G.; Kawabata K.; Takimiya K. Heavy-Atom Effects” in the Parent [1] Benzochalcogenopheno [3, 2-b][1] Benzochalcogenophene System. J. Mater. Chem. C Mater. 2020, 8 (43), 15119–15127. 10.1039/D0TC01408G. DOI

Hsieh C. T.; Chen C. Y.; Lin H. Y.; Yang C. J.; Chen T. J.; Wu K. Y.; Wang C. L. Polymorphic Behavior of Perylene and Its Influences on OFET Performances. J. Phys. Chem. C 2018, 122 (28), 16242–16248. 10.1021/acs.jpcc.8b02199. DOI

Pensack R. D.; Purdum G. E.; Mazza S. M.; Grieco C.; Asbury J. B.; Anthony J. E.; Loo Y.-L.; Scholes G. D. Excited-State Dynamics of 5,14- vs 6,13-Bis(Trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. J. Phys. Chem. C 2022, 126 (23), 9784–9793. 10.1021/acs.jpcc.2c00897. PubMed DOI PMC

Wang X.; Liu X.; Cook C.; Schatschneider B.; Marom N. On the Possibility of Singlet Fission in Crystalline Quaterrylene. J. Chem. Phys. 2018, 148 (18), 184101.10.1063/1.5027553. PubMed DOI

Gsänger M.; Bialas D.; Huang L.; Stolte M.; Würthner F. Organic Semiconductors Based on Dyes and Color Pigments. Adv. Mater. 2016, 28 (19), 3615–3645. 10.1002/adma.201505440. PubMed DOI

Würthner F.; Stolte M. Naphthalene and Perylene Diimides for Organic Transistors. Chem. Commun. 2011, 47 (18), 5109–5115. 10.1039/c1cc10321k. PubMed DOI

Chen Z.; Debije M. G.; Debaerdemaeker T.; Osswald P.; Würthner F. Tetrachloro-Substituted Perylene Bisimide Dyes as Promising n-Type Organic Semiconductors: Studies on Structural, Electrochemical and Charge Transport Properties. ChemPhysChem 2004, 5 (1), 137–140. 10.1002/cphc.200300882. PubMed DOI

Palatinus L.; Brázda P.; Jelínek M.; Hrdá J.; Steciuk G.; Klementová M. Specifics of the Data Processing of Precession Electron Diffraction Tomography Data and Their Implementation in the Program PETS2.0. Acta Crystallographica Section B 2019, 75 (4), 512–522. 10.1107/S2052520619007534. PubMed DOI

Brázda P.; Klementová M.; Krysiak Y.; Palatinus L. Accurate Lattice Parameters from 3D Electron Diffraction Data. I. Optical Distortions. IUCrJ. 2022, 9 (6), 735–755. 10.1107/S2052252522007904. PubMed DOI PMC

Klar P. B.; Krysiak Y.; Xu H.; Steciuk G.; Cho J.; Zou X.; Palatinus L. Accurate Structure Models and Absolute Configuration Determination Using Dynamical Effects in Continuous-Rotation 3D Electron Diffraction Data. Nat. Chem. 2023, 15 (6), 848–855. 10.1038/s41557-023-01186-1. PubMed DOI PMC

Palatinus L.; Petříček V.; Corrêa C. A. Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation. Acta Crystallogr., Sect. A 2015, 71 (2), 235–244. 10.1107/S2053273315001266. PubMed DOI

Petříček V.; Palatinus L.; Plášil J.; Dušek M.. Jana2020 – a New Version of the Crystallographic Computing System Jana. 2023, 238 ( (7–8), ), 271–282. DOI: 10.1515/zkri-2023-0005. DOI

Macrae C. F.; Sovago I.; Cottrell S. J.; Galek P. T. A.; McCabe P.; Pidcock E.; Platings M.; Shields G. P.; Stevens J. S.; Towler M.; Wood P. A. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53 (1), 226–235. 10.1107/S1600576719014092. PubMed DOI PMC

Giannini S.; Blumberger J. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics. Acc. Chem. Res. 2022, 55 (6), 819–830. 10.1021/acs.accounts.1c00675. PubMed DOI PMC

Abd El-Aal H. A. K.; Khalaf A. A. Modern Friedel-Crafts Chemistry. Part 38. Facile Synthesis of Acenaphthenes via Direct and Rearranged Intramolecular Friedel-Crafts Cyclialkylations of Intermediate Carbinols. Polycycl Aromat Compd 2013, 33 (4), 331–346. 10.1080/10406638.2013.781041. DOI

Rickhaus M.; Belanger A. P.; Wegner H. A.; Scott L. T. An Oxidation Induced by Potassium Metal. Studies on the Anionic Cyclodehydrogenation of 1,1′-Binaphthyl to Perylene. J. Org. Chem. 2010, 75 (21), 7358–7364. 10.1021/jo101635z. PubMed DOI

Jackson K. A.; Hunt J. D. Transparent Compounds That Freeze like Metals. Acta Metall. 1965, 13 (11), 1212–1215. 10.1016/0001-6160(65)90061-1. DOI

Warta W.; Karl N. Hot Holes in Naphthalene: High, Electric-Field-Dependent Mobilities. Phys. Rev. B 1985, 32 (2), 1172–1182. 10.1103/PhysRevB.32.1172. PubMed DOI

McKinnon J. J.; Spackman M. A.; Mitchell A. S. Novel Tools for Visualizing and Exploring Intermolecular Interactions in Molecular Crystals. Acta Crystallogr. B 2004, 60 (6), 627–668. 10.1107/S0108768104020300. PubMed DOI

Hall C. L.; Andrusenko I.; Potticary J.; Gao S.; Liu X.; Schmidt W.; Marom N.; Mugnaioli E.; Gemmi M.; Hall S. R. 3D Electron Diffraction Structure Determination of Terrylene, a Promising Candidate for Intermolecular Singlet Fission. ChemPhysChem 2021, 22 (15), 1631–1637. 10.1002/cphc.202100320. PubMed DOI PMC

Koch N.; Salzmann I.; Johnson R. L.; Pflaum J.; Friedlein R.; Rabe J. P. Molecular Orientation Dependent Energy Levels at Interfaces with Pentacene and Pentacenequinone. Org. Electron. 2006, 7 (6), 537–545. 10.1016/j.orgel.2006.07.010. DOI

Duhm S.; Heimel G.; Salzmann I.; Glowatzki H.; Johnson R. L.; Vollmer A.; Rabe J. P.; Koch N. Orientation-Dependent Ionization Energies and Interface Dipoles in Ordered Molecular Assemblies. Nat. Mater. 2008, 7 (4), 326–332. 10.1038/nmat2119. PubMed DOI

Schweicher G.; Garbay G.; Jouclas R.; Vibert F.; Devaux F.; Geerts Y. H.. Molecular Semiconductors for Logic Operations: Dead-End or Bright Future?. Adv. Mater. 2020, 32( (10), )10.1002/adma.201905909. PubMed DOI

Margulies E. A.; Miller C. E.; Wu Y.; Ma L.; Schatz G. C.; Young R. M.; Wasielewski M. R. Enabling Singlet Fission by Controlling Intramolecular Charge Transfer in π-Stacked Covalent Terrylenediimide Dimers. Nat. Chem. 2016, 8 (12), 1120–1125. 10.1038/nchem.2589. PubMed DOI

Takimiya K.; Osaka I.; Mori T.; Nakano M. Organic Semiconductors Based on [1]Benzothieno[3,2-b][1]Benzothiophene Substructure. Acc. Chem. Res. 2014, 47 (5), 1493–1502. 10.1021/ar400282g. PubMed DOI

Fratini S.; Mayou D.; Ciuchi S. The Transient Localization Scenario for Charge Transport in Crystalline Organic Materials. Adv. Funct. Mater. 2016, 26 (14), 2292–2315. 10.1002/adfm.201502386. DOI

Fratini S.; Ciuchi S.; Mayou D.; De Laissardière G. T.; Troisi A. A Map of High-Mobility Molecular Semiconductors. Nat. Mater. 2017, 16 (10), 998–1002. 10.1038/nmat4970. PubMed DOI

Mitsui C.; Okamoto T.; Yamagishi M.; Tsurumi J.; Yoshimoto K.; Nakahara K.; Soeda J.; Hirose Y.; Sato H.; Yamano A.; Uemura T.; Takeya J. High-Performance Solution-Processable N-Shaped Organic Semiconducting Materials with Stabilized Crystal Phase. Adv. Mater. 2014, 26 (26), 4546–4551. 10.1002/adma.201400289. PubMed DOI

Seki S.; Saeki A.; Sakurai T.; Sakamaki D. Charge Carrier Mobility in Organic Molecular Materials Probed by Electromagnetic Waves. Phys. Chem. Chem. Phys. 2014, 16 (23), 11093–11113. 10.1039/C4CP00473F. PubMed DOI

Honsho Y.; Miyakai T.; Sakurai T.; Saeki A.; Seki S. Evaluation of Intrinsic Charge Carrier Transport at Insulator-Semiconductor Interfaces Probed by a Non-Contact Microwave-Based Technique. Sci. Rep. 2013, 3 (1), 3182.10.1038/srep03182. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...