Crystal Engineering in Oligorylenes: The Quest for Optimized Crystal Packing and Enhanced Charge Transport
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40352750
PubMed Central
PMC12063044
DOI
10.1021/acs.cgd.5c00145
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The crystal structures of organic semiconductors are critical when they are integrated into optoelectronic devices, such as organic field-effect transistors (OFETs). In this study, we introduce a crystal engineering approach that leverages weak, nondirectional dispersion forces and steric effects, working together to govern the molecular packing. We investigated how the substitution at the peri-position affects the crystal structure in a series of oligorylene molecules. Upon elucidation of the crystal structures, we found a distinct difference between symmetrical and unsymmetrical derivatives. The unsymmetrical derivatives are prone to forming a sandwich herringbone (SHB) motif, while symmetrical derivatives exhibit a typical herringbone (HB) motif. In most of the rylene derivatives, substitutions at the peri-position triggered an "end-to-face" orientation within the HB structure, rather than an "edge-to-face" orientation, which occurs more often. Results from the Hirschfeld surface analysis provide evidence that the "end-to-face" orientation promotes C-H-π interactions between terminal methyl groups and the π-core of the molecules. While these C-Hmethyl---π interactions contribute to the overall stability of the packing structure, they remain ineffective in enhancing the charge transport properties. In contrast, a particular derivative, tetramethyl perylene (TMP), exhibits a HB structure with an edge-to-face orientation, promoting both C-H---π and π---π interactions. These interactions are crucial for improving the charge carrier mobility, as evidenced by mobility values. For TMP, we could obtain the mobility value of 0.05 cm2 V-1 s-1 in OFETs, whereas a slightly higher mobility of 0.2 cm2 V-1 s-1 was observed with Field-Induced Time-Resolved Microwave conductivity (FI-TRMC) technique.
BASF SE RGD J542S am Rhein Ludwigshafen 67056 Germany
Department of Chemistry University of Rochester Rochester New York 14627 United States
Dipartimento di Chimica G Ciamician Via Selmi 2 Università di Bologna Bologna 1 40126 Italy
erConTec GmbH Roter Turm Weg 3 Wachenheim an der Weinstrasse 67157 Germany
Institut für Physik and IRIS Adlershof Humboldt Universitat zu Berlin Berlin 12489 Germany
International Solvay Institutes ULB CP 231 Boulevard du Triomphe Bruxelles 1050 Belgium
Laboratory for Chemistry of Novel Materials University of Mons Mons 7000 Belgium
University of Strasbourg CNRS ISIS UMR 7006 8 Alleé Gaspard Monge Strasbourg 67000 France
See more in PubMed
Desiraju G. R.; Gavezzotti A. Crystal Structures of Polynuclear Aromatic Hydrocarbons. Classification, Rationalization and Prediction from Molecular Structure. Acta Crystallographica Section B 1989, 45 (5), 473–482. 10.1107/S0108768189003794. DOI
Desiraju G. R. Crystal Engineering: Solid State Supramolecular Synthesis. Curr. Opin. Solid State Mater. Sci. 1997, 2 (4), 451–454. 10.1016/S1359-0286(97)80088-5. DOI
Desiraju G. R. Designer Crystals: Intermolecular Interactions, Network Structures and Supramolecular Synthons. Chem. Commun. 1997, (16), 1475–1482. 10.1039/a607149j. DOI
Bishop R. Organic Crystal Engineering beyond the Pauling Hydrogen Bond. CrystEngComm 2015, 17 (39), 7448–7460. 10.1039/C5CE01069A. DOI
Solà M. Forty Years of Clar’s Aromatic π-Sextet Rule. Front Chem. 2013, 1, 66422.10.3389/fchem.2013.00022. PubMed DOI PMC
Razus A. C. Azulene Moiety as Electron Reservoir in Positively Charged Systems; a Short Survey. Symmetry 2021, 13 (4), 526.10.3390/sym13040526. DOI
Markiewicz J. T.; Wudl F. Perylene, Oligorylenes, and Aza-Analogs. ACS Appl. Mater. Interfaces 2015, 7 (51), 28063–28085. 10.1021/acsami.5b02243. PubMed DOI
Würthner F.; Saha-Möller C. R.; Fimmel B.; Ogi S.; Leowanawat P.; Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem. Rev. 2016, 116 (3), 962–1052. 10.1021/acs.chemrev.5b00188. PubMed DOI
Müllen K. Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience. ACS Nano 2014, 8 (7), 6531–6541. 10.1021/nn503283d. PubMed DOI
Simmons G. L.; Lingafelter E. C. The Crystal Structure of Pyracene. Acta Crystallogr. 1961, 14 (8), 872–874. 10.1107/S0365110X61002515. DOI
Ehrlich H. W. W. A Refinement of the Crystal and Molecular Structure of Acenaphthene. Acta Crystallogr. 1957, 10, 699–705. 10.1107/S0365110X5700242X. DOI
Koch K.-H.; Müllen K. Polyarylenes and Poly(Arylenevinylene)s, V. Synthesis of Tetraalkyl-Substituted Oligo(1,4-Naphthylene)s and Cyclization to Soluble Oligo(Peri-Naphthylene)S2). Chem. Ber. 1991, 124 (9), 2091–2100. 10.1002/cber.19911240935. DOI
Pigulski B.; Ximenis M.; Shoyama K.; Würthner F. Synthesis of Polycyclic Aromatic Hydrocarbons by Palladium-Catalysed [3 + 3] Annulation. Org. Chem. Front. 2020, 7 (19), 2925–2930. 10.1039/D0QO00968G. DOI
Tanaka J. The Electronic Spectra of Aromatic Molecular Crystals. II. The Crystal Structure and Spectra of Perylene. Bull. Chem. Soc. Jpn. 1963, 36 (10), 1237–1249. 10.1246/bcsj.36.1237. DOI
Li T.; Zhang C. Z.; Su Y. X.; Niu M. X.; Gu C. Y.; Song M. X. Crystal Structure and Optoelectronic Properties of Antiaromatic Compound 3,4,9,10-Tetrahydrodicyclopenta[Cd,Lm]Perylene. Crystallography Reports 2017, 62 (6), 885–888. 10.1134/S1063774517060165. DOI
Anderson A. G.; Wade R. H. The Synthesis of Pyracene. J. Am. Chem. Soc. 1952, 74 (9), 2274–2278. 10.1021/ja01129a032. DOI
EatonMillerMarguliesShoerSchaller S. W. S. A. E. A. L. E. R. D.; Wasielewski M. R. S. A.; Margulies E.; Shoer E.; Schaller L. D. R.; Wasielewski R.; Singlet M. Singlet Exciton Fission in Thin Films of tert-Butyl-Substituted Terrylenes. J. Phys. Chem. A 2015, 119 (18), 4151–4161. 10.1021/acs.jpca.5b02719. PubMed DOI
Pookpanratana S. J.; Goetz K. P.; Bittle E. G.; Haneef H.; You L.; Hacker C. A.; Robey S. W.; Jurchescu O. D.; Ovsyannikov R.; Giangrisostomi E. Electronic Properties and Structure of Single Crystal Perylene. Org. Electron. 2018, 61, 157–163. 10.1016/j.orgel.2018.05.035. PubMed DOI PMC
Pick A.; Klues M.; Rinn A.; Harms K.; Chatterjee S.; Witte G. Polymorph-Selective Preparation and Structural Characterization of Perylene Single Crystals. Cryst. Growth Des. 2015, 15 (11), 5495–5504. 10.1021/acs.cgd.5b01130. DOI
Datta A.; Mohakud S.; Pati S. K. Comparing the Electron and Hole Mobilities in the α and β Phases of Perylene: Role of π-Stacking. J. Mater. Chem. 2007, 17 (19), 1933–1938. 10.1039/B700625J. DOI
Sato K.; Katoh R. Fluorescence Properties of β-Perylene Crystals Prepared by a Physical Vapor Transport Method under Atmospheric Pressure. Chem. Phys. Lett. 2019, 730, 312–315. 10.1016/j.cplett.2019.06.031. DOI
Friedlein R.; Crispin X.; Pickholz M.; Keil M.; Stafström S.; Salaneck W. R. High Intercalation Levels in Lithium Perylene Stoichiometric Compounds. Chem. Phys. Lett. 2002, 354 (5), 389–394. 10.1016/S0009-2614(02)00148-3. DOI
Wang C.; Abbas M.; Wantz G.; Kawabata K.; Takimiya K. Heavy-Atom Effects” in the Parent [1] Benzochalcogenopheno [3, 2-b][1] Benzochalcogenophene System. J. Mater. Chem. C Mater. 2020, 8 (43), 15119–15127. 10.1039/D0TC01408G. DOI
Hsieh C. T.; Chen C. Y.; Lin H. Y.; Yang C. J.; Chen T. J.; Wu K. Y.; Wang C. L. Polymorphic Behavior of Perylene and Its Influences on OFET Performances. J. Phys. Chem. C 2018, 122 (28), 16242–16248. 10.1021/acs.jpcc.8b02199. DOI
Pensack R. D.; Purdum G. E.; Mazza S. M.; Grieco C.; Asbury J. B.; Anthony J. E.; Loo Y.-L.; Scholes G. D. Excited-State Dynamics of 5,14- vs 6,13-Bis(Trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. J. Phys. Chem. C 2022, 126 (23), 9784–9793. 10.1021/acs.jpcc.2c00897. PubMed DOI PMC
Wang X.; Liu X.; Cook C.; Schatschneider B.; Marom N. On the Possibility of Singlet Fission in Crystalline Quaterrylene. J. Chem. Phys. 2018, 148 (18), 184101.10.1063/1.5027553. PubMed DOI
Gsänger M.; Bialas D.; Huang L.; Stolte M.; Würthner F. Organic Semiconductors Based on Dyes and Color Pigments. Adv. Mater. 2016, 28 (19), 3615–3645. 10.1002/adma.201505440. PubMed DOI
Würthner F.; Stolte M. Naphthalene and Perylene Diimides for Organic Transistors. Chem. Commun. 2011, 47 (18), 5109–5115. 10.1039/c1cc10321k. PubMed DOI
Chen Z.; Debije M. G.; Debaerdemaeker T.; Osswald P.; Würthner F. Tetrachloro-Substituted Perylene Bisimide Dyes as Promising n-Type Organic Semiconductors: Studies on Structural, Electrochemical and Charge Transport Properties. ChemPhysChem 2004, 5 (1), 137–140. 10.1002/cphc.200300882. PubMed DOI
Palatinus L.; Brázda P.; Jelínek M.; Hrdá J.; Steciuk G.; Klementová M. Specifics of the Data Processing of Precession Electron Diffraction Tomography Data and Their Implementation in the Program PETS2.0. Acta Crystallographica Section B 2019, 75 (4), 512–522. 10.1107/S2052520619007534. PubMed DOI
Brázda P.; Klementová M.; Krysiak Y.; Palatinus L. Accurate Lattice Parameters from 3D Electron Diffraction Data. I. Optical Distortions. IUCrJ. 2022, 9 (6), 735–755. 10.1107/S2052252522007904. PubMed DOI PMC
Klar P. B.; Krysiak Y.; Xu H.; Steciuk G.; Cho J.; Zou X.; Palatinus L. Accurate Structure Models and Absolute Configuration Determination Using Dynamical Effects in Continuous-Rotation 3D Electron Diffraction Data. Nat. Chem. 2023, 15 (6), 848–855. 10.1038/s41557-023-01186-1. PubMed DOI PMC
Palatinus L.; Petříček V.; Corrêa C. A. Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation. Acta Crystallogr., Sect. A 2015, 71 (2), 235–244. 10.1107/S2053273315001266. PubMed DOI
Petříček V.; Palatinus L.; Plášil J.; Dušek M.. Jana2020 – a New Version of the Crystallographic Computing System Jana. 2023, 238 ( (7–8), ), 271–282. DOI: 10.1515/zkri-2023-0005. DOI
Macrae C. F.; Sovago I.; Cottrell S. J.; Galek P. T. A.; McCabe P.; Pidcock E.; Platings M.; Shields G. P.; Stevens J. S.; Towler M.; Wood P. A. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53 (1), 226–235. 10.1107/S1600576719014092. PubMed DOI PMC
Giannini S.; Blumberger J. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics. Acc. Chem. Res. 2022, 55 (6), 819–830. 10.1021/acs.accounts.1c00675. PubMed DOI PMC
Abd El-Aal H. A. K.; Khalaf A. A. Modern Friedel-Crafts Chemistry. Part 38. Facile Synthesis of Acenaphthenes via Direct and Rearranged Intramolecular Friedel-Crafts Cyclialkylations of Intermediate Carbinols. Polycycl Aromat Compd 2013, 33 (4), 331–346. 10.1080/10406638.2013.781041. DOI
Rickhaus M.; Belanger A. P.; Wegner H. A.; Scott L. T. An Oxidation Induced by Potassium Metal. Studies on the Anionic Cyclodehydrogenation of 1,1′-Binaphthyl to Perylene. J. Org. Chem. 2010, 75 (21), 7358–7364. 10.1021/jo101635z. PubMed DOI
Jackson K. A.; Hunt J. D. Transparent Compounds That Freeze like Metals. Acta Metall. 1965, 13 (11), 1212–1215. 10.1016/0001-6160(65)90061-1. DOI
Warta W.; Karl N. Hot Holes in Naphthalene: High, Electric-Field-Dependent Mobilities. Phys. Rev. B 1985, 32 (2), 1172–1182. 10.1103/PhysRevB.32.1172. PubMed DOI
McKinnon J. J.; Spackman M. A.; Mitchell A. S. Novel Tools for Visualizing and Exploring Intermolecular Interactions in Molecular Crystals. Acta Crystallogr. B 2004, 60 (6), 627–668. 10.1107/S0108768104020300. PubMed DOI
Hall C. L.; Andrusenko I.; Potticary J.; Gao S.; Liu X.; Schmidt W.; Marom N.; Mugnaioli E.; Gemmi M.; Hall S. R. 3D Electron Diffraction Structure Determination of Terrylene, a Promising Candidate for Intermolecular Singlet Fission. ChemPhysChem 2021, 22 (15), 1631–1637. 10.1002/cphc.202100320. PubMed DOI PMC
Koch N.; Salzmann I.; Johnson R. L.; Pflaum J.; Friedlein R.; Rabe J. P. Molecular Orientation Dependent Energy Levels at Interfaces with Pentacene and Pentacenequinone. Org. Electron. 2006, 7 (6), 537–545. 10.1016/j.orgel.2006.07.010. DOI
Duhm S.; Heimel G.; Salzmann I.; Glowatzki H.; Johnson R. L.; Vollmer A.; Rabe J. P.; Koch N. Orientation-Dependent Ionization Energies and Interface Dipoles in Ordered Molecular Assemblies. Nat. Mater. 2008, 7 (4), 326–332. 10.1038/nmat2119. PubMed DOI
Schweicher G.; Garbay G.; Jouclas R.; Vibert F.; Devaux F.; Geerts Y. H.. Molecular Semiconductors for Logic Operations: Dead-End or Bright Future?. Adv. Mater. 2020, 32( (10), )10.1002/adma.201905909. PubMed DOI
Margulies E. A.; Miller C. E.; Wu Y.; Ma L.; Schatz G. C.; Young R. M.; Wasielewski M. R. Enabling Singlet Fission by Controlling Intramolecular Charge Transfer in π-Stacked Covalent Terrylenediimide Dimers. Nat. Chem. 2016, 8 (12), 1120–1125. 10.1038/nchem.2589. PubMed DOI
Takimiya K.; Osaka I.; Mori T.; Nakano M. Organic Semiconductors Based on [1]Benzothieno[3,2-b][1]Benzothiophene Substructure. Acc. Chem. Res. 2014, 47 (5), 1493–1502. 10.1021/ar400282g. PubMed DOI
Fratini S.; Mayou D.; Ciuchi S. The Transient Localization Scenario for Charge Transport in Crystalline Organic Materials. Adv. Funct. Mater. 2016, 26 (14), 2292–2315. 10.1002/adfm.201502386. DOI
Fratini S.; Ciuchi S.; Mayou D.; De Laissardière G. T.; Troisi A. A Map of High-Mobility Molecular Semiconductors. Nat. Mater. 2017, 16 (10), 998–1002. 10.1038/nmat4970. PubMed DOI
Mitsui C.; Okamoto T.; Yamagishi M.; Tsurumi J.; Yoshimoto K.; Nakahara K.; Soeda J.; Hirose Y.; Sato H.; Yamano A.; Uemura T.; Takeya J. High-Performance Solution-Processable N-Shaped Organic Semiconducting Materials with Stabilized Crystal Phase. Adv. Mater. 2014, 26 (26), 4546–4551. 10.1002/adma.201400289. PubMed DOI
Seki S.; Saeki A.; Sakurai T.; Sakamaki D. Charge Carrier Mobility in Organic Molecular Materials Probed by Electromagnetic Waves. Phys. Chem. Chem. Phys. 2014, 16 (23), 11093–11113. 10.1039/C4CP00473F. PubMed DOI
Honsho Y.; Miyakai T.; Sakurai T.; Saeki A.; Seki S. Evaluation of Intrinsic Charge Carrier Transport at Insulator-Semiconductor Interfaces Probed by a Non-Contact Microwave-Based Technique. Sci. Rep. 2013, 3 (1), 3182.10.1038/srep03182. PubMed DOI PMC