Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells
Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30975914
PubMed Central
PMC6959166
DOI
10.3324/haematol.2018.203430
PII: haematol.2018.203430
Knihovny.cz E-zdroje
- MeSH
- antimetabolity antitumorózní farmakologie MeSH
- apoptóza MeSH
- buněčný cyklus MeSH
- checkpoint kinasa 1 antagonisté a inhibitory MeSH
- chemorezistence účinky léků MeSH
- chronická lymfatická leukemie farmakoterapie genetika patologie MeSH
- deoxycytidin analogy a deriváty farmakologie MeSH
- gemcitabin MeSH
- inhibitory proteinkinas farmakologie MeSH
- lidé MeSH
- mutace * MeSH
- myši inbrední NOD MeSH
- myši SCID MeSH
- myši MeSH
- nádorové biomarkery genetika MeSH
- nádorové buňky kultivované MeSH
- nádorový supresorový protein p53 genetika MeSH
- piperidiny farmakologie MeSH
- proliferace buněk MeSH
- pyrazoly farmakologie MeSH
- pyrimidiny farmakologie MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- synergismus léků * MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antimetabolity antitumorózní MeSH
- checkpoint kinasa 1 MeSH
- CHEK1 protein, human MeSH Prohlížeč
- deoxycytidin MeSH
- gemcitabin MeSH
- inhibitory proteinkinas MeSH
- MK-8776 MeSH Prohlížeč
- MU380 MeSH Prohlížeč
- nádorové biomarkery MeSH
- nádorový supresorový protein p53 MeSH
- piperidiny MeSH
- pyrazoly MeSH
- pyrimidiny MeSH
- TP53 protein, human MeSH Prohlížeč
Introduction of small-molecule inhibitors of B-cell receptor signaling and BCL2 protein significantly improves therapeutic options in chronic lymphocytic leukemia. However, some patients suffer from adverse effects mandating treatment discontinuation, and cases with TP53 defects more frequently experience early progression of the disease. Development of alternative therapeutic approaches is, therefore, of critical importance. Here we report details of the anti-chronic lymphocytic leukemia single-agent activity of MU380, our recently identified potent, selective, and metabolically robust inhibitor of checkpoint kinase 1. We also describe a newly developed enantioselective synthesis of MU380, which allows preparation of gram quantities of the substance. Checkpoint kinase 1 is a master regulator of replication operating primarily in intra-S and G2/M cell cycle checkpoints. Initially tested in leukemia and lymphoma cell lines, MU380 significantly potentiated efficacy of gemcitabine, a clinically used inducer of replication stress. Moreover, MU380 manifested substantial single-agent activity in both TP53-wild type and TP53-mutated leukemia and lymphoma cell lines. In chronic lymphocytic leukemia-derived cell lines MEC-1, MEC-2 (both TP53-mut), and OSU-CLL (TP53-wt) the inhibitor impaired cell cycle progression and induced apoptosis. In primary clinical samples, MU380 used as a single-agent noticeably reduced the viability of unstimulated chronic lymphocytic leukemia cells as well as those induced to proliferate by anti-CD40/IL-4 stimuli. In both cases, effects were comparable in samples harboring p53 pathway dysfunction (TP53 mutations or ATM mutations) and TP53-wt/ATM-wt cells. Lastly, MU380 also exhibited significant in vivo activity in a xenotransplant mouse model (immunodeficient strain NOD-scid IL2Rγnull ) where it efficiently suppressed growth of subcutaneous tumors generated from MEC-1 cells.
Center of Molecular Medicine Central European Institute of Technology Masaryk University
Department of Chemistry CZ Openscreen Faculty of Science Masaryk University
Department of Cytokinetics Institute of Biophysics CAS v v i
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University
Zobrazit více v PubMed
Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2015;94(3):193–205. PubMed
Thompson PA, Burger JA. Bruton’s tyrosine kinase inhibitors: first and second generation agents for patients with Chronic Lymphocytic Leukemia (CLL). Expert Opin Investig Drugs. 2018;27(1):31–42. PubMed
Daniel C, Mato AR. BCL-2 as a therapeutic target in chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2017;15(3):210–218. PubMed
Mato AR, Nabhan C, Thompson MC, et al. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: a real-world analysis. Haematologica. 2018;103(5): 874–879. PubMed PMC
Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of Ibrutinib Therapy Discontinuation and Outcomes in Patients With Chronic Lymphocytic Leukemia. JAMA Oncol. 2015;1(1): 80–87. PubMed PMC
O’Brien S, Furman RR, Coutre S, et al. Single-agent ibrutinib in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood. 2018;131(17):1910–1919. PubMed PMC
Jones J, Mato A, Coutre S, et al. Evaluation of 230 patients with relapsed/refractory deletion 17p chronic lymphocytic leukaemia treated with ibrutinib from 3 clinical trials. Br J Haematol. 2018;182(4):504–512. PubMed PMC
Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247–3254. PubMed
Thompson R, Eastman A. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design: Therapeutic potential of Chk1 inhibitors. Br J Clin Pharmacol. 2013;76(3):358–369. PubMed PMC
González Besteiro MA, Gottifredi V. The fork and the kinase: a DNA replication tale from a CHK1 perspective. Mutat Res Rev. 2015;763168–180. PubMed PMC
Bartkova J, Horejsí Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434(7035):864–870. PubMed
de Klein A, Muijtjens M, van Os R, et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol. 2000;10(8):479–482. PubMed
Takai H, Tominaga K, Motoyama N, et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev. 2000;14(12):1439–1447. PubMed PMC
Bryant C, Rawlinson R, Massey AJ. Chk1 inhibition as a novel therapeutic strategy for treating triple-negative breast and ovarian cancers. BMC Cancer. 2014;14:570. PubMed PMC
Sen T, Tong P, Stewart CA, et al. CHK1 Inhibition in Small-Cell Lung Cancer Produces Single-Agent Activity in Biomarker-Defined Disease Subsets and Combination Activity with Cisplatin or Olaparib. Cancer Res. 2017;77(14):3870–3884. PubMed PMC
Manic G, Signore M, Sistigu A, et al. CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut. 2018;67(5):903–917. PubMed PMC
Lowery CD, VanWye AB, Dowless M, et al. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma. Clin Cancer Res. 2017;23(15):4354–4363. PubMed
Oo ZY, Stevenson AJ, Proctor M, et al. Endogenous Replication Stress Marks Melanomas Sensitive to CHEK1 Inhibitors In Vivo. Clin Cancer Res. 2018;24(12):2901–2912. PubMed
Walton MI, Eve PD, Hayes A, et al. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eμ-MYC driven B-cell lymphoma. Oncotarget. 2016;7(3):2329–2342. PubMed PMC
Bryant C, Scriven K, Massey AJ. Inhibition of the checkpoint kinase Chk1 induces DNA damage and cell death in human Leukemia and Lymphoma cells. Mol Cancer. 2014;13:147. PubMed PMC
Iacobucci I, Di Rorà AGL, Falzacappa MVV, et al. In vitro and in vivo single-agent efficacy of checkpoint kinase inhibition in acute lymphoblastic leukemia. J Hematol Oncol. 2015;8:125. PubMed PMC
Schuler F, Weiss JG, Lindner SE, et al. Checkpoint kinase 1 is essential for normal B cell development and lymphomagenesis. Nat Commun. 2017;8(1):1697. PubMed PMC
Kwok M, Davies N, Agathanggelou A, et al. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood. 2016;127(5):582–595. PubMed
Zemanova J, Hylse O, Collakova J, et al. Chk1 inhibition significantly potentiates activity of nucleoside analogs in TP53-mutated B-lymphoid cells. Oncotarget. 2016;7(38):62091–62106. PubMed PMC
Guzi TJ, Paruch K, Dwyer MP, et al. Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther. 2011;10(4):591–602. PubMed
Samadder P, Suchánková T, Hylse O, et al. Synthesis and Profiling of a Novel Potent Selective Inhibitor of CHK1 Kinase Possessing Unusual N-trifluoromethylpyrazole Pharmacophore Resistant to Metabolic N-dealkylation. Mol Cancer Ther. 2017;16 (9):1831–1842. PubMed
Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–629. PubMed
Patten PEM, Chu CC, Albesiano E, et al. IGHV-unmutated and IGHV-mutated chronic lymphocytic leukemia cells produce activation-induced deaminase protein with a full range of biologic functions. Blood. 2012;120(24):4802–4811. PubMed PMC
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bio-science research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. PubMed PMC
Shultz LD, Lyons BL, Burzenski LM, et al. Human Lymphoid and Myeloid Cell Development in NOD/LtSz-scid IL2Rγnull Mice Engrafted with Mobilized Human Hemopoietic Stem Cells. J Immunol. 2005;174(10):6477–6489. PubMed
Labroli MA, Dwyer MP, Poker C, Keertikar KM, Rossman R, Guzi TJ. A convergent preparation of the CHK1 inhibitor MK-8776 (SCH 900776). Tetrahedron Lett. 2016;57 (24):2601–2603.
Davies KD, Humphries MJ, Sullivan FX, et al. Single-agent inhibition of Chk1 is antiproliferative in human cancer cell lines in vitro and inhibits tumor xenograft growth in vivo. Oncol Res. 2011;19(7):349–363. PubMed
Kawabe T. G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004;3(4):513–519. PubMed
Ma CX, Janetka JW, Piwnica-Worms H. Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011;17(2):88–96. PubMed PMC
Sanjiv K, Hagenkort A, Calderón-Montaño JM, et al. Cancer-Specific Synthetic Lethality between ATR and CHK1 Kinase Activities. Cell Rep. 2016;14(2):298–309. PubMed PMC
Beyaert M, Starczewska E, Pérez ACG, et al. Reevaluation of ATR signaling in primary resting chronic lymphocytic leukemia cells: evidence for pro-survival or pro-apoptotic function. Oncotarget. 2017;8(34):56906–56920. PubMed PMC
Natoni A, Murillo LS, Kliszczak AE, et al. Mechanisms of action of a dual Cdc7/Cdk9 kinase inhibitor against quiescent and proliferating CLL cells. Mol Cancer Ther. 2011;10(9):1624–1634. PubMed
Jones GG, Reaper PM, Pettitt AR, Sherrington PD. The ATR-p53 pathway is suppressed in noncycling normal and malignant lymphocytes. Oncogene. 2004;23(10): 1911–1921. PubMed
Tse AN, Rendahl KG, Sheikh T, et al. CHIR-124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo. Clin Cancer Res. 2007;13(2 Pt 1):591–602. PubMed
Giordano Attianese GMP, Marin V, Hoyos V, et al. In vitro and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD23 chimeric antigen receptor. Blood. 2011;117(18):4736–4745. PubMed PMC
Verner J, Trbusek M, Chovancova J, et al. NOD/SCID IL2Rγ-null mouse xenograft model of human p53-mutated chronic lymphocytic leukemia and ATM-mutated mantle cell lymphoma using permanent cell lines. Leuk Lymphoma. 2015;56(11):3198–3206. PubMed
Messmer BT, Messmer D, Allen SL, et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest. 2005;115(3): 755–764. PubMed PMC
Herishanu Y, Pérez-Galán P, Liu D, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563–574. PubMed PMC
Herndon TM, Chen S-S, Saba NS, et al. Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood. Leukemia. 2017;31(6):1340–1347. PubMed PMC
Obermann EC, Went P, Tzankov A, et al. Cell cycle phase distribution analysis in chronic lymphocytic leukaemia: a significant number of cells reside in early G1-phase. J Clin Pathol. 2007;60(7):794–797. PubMed PMC
Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–530. PubMed PMC
Grgurevic S, Berquet L, Quillet-Mary A, et al. 3R gene expression in chronic lymphocytic leukemia reveals insight into disease evolution. Blood Cancer J. 2016;6(6):e429. PubMed PMC
Kaneko YS, Watanabe N, Morisaki H, et al. Cell-cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene. 1999;18(25):3673–3681. PubMed
Dietrich S, Oleś M, Lu J, et al. Drug-perturbation-based stratification of blood cancer. J Clin Invest. 2018;128(1):427–445. PubMed PMC
Petlickovski A, Laurenti L, Li X, et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood. 2005;105(12):4820–4827. PubMed