The CHK1 inhibitor MU380 significantly increases the sensitivity of human docetaxel-resistant prostate cancer cells to gemcitabine through the induction of mitotic catastrophe
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32579780
PubMed Central
PMC7530791
DOI
10.1002/1878-0261.12756
Knihovny.cz E-zdroje
- Klíčová slova
- MU380, castration-resistant prostate cancer, checkpoint kinase 1, docetaxel resistance, gemcitabine, mitotic catastrophe,
- MeSH
- buněčná smrt účinky léků MeSH
- checkpoint kinasa 1 antagonisté a inhibitory metabolismus MeSH
- chemorezistence účinky léků MeSH
- deoxycytidin analogy a deriváty farmakologie MeSH
- docetaxel farmakologie MeSH
- gemcitabin MeSH
- lidé MeSH
- mitóza * účinky léků MeSH
- myši SCID MeSH
- nádorové buněčné linie MeSH
- nádory prostaty patologie MeSH
- piperidiny chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- pyrazoly chemie farmakologie MeSH
- pyrimidiny chemie farmakologie MeSH
- S fáze účinky léků MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- checkpoint kinasa 1 MeSH
- CHEK1 protein, human MeSH Prohlížeč
- deoxycytidin MeSH
- docetaxel MeSH
- gemcitabin MeSH
- MU380 MeSH Prohlížeč
- piperidiny MeSH
- pyrazoly MeSH
- pyrimidiny MeSH
As treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa. Synergistic induction of DNA damage with CHK1 inhibition represents a promising therapeutic approach that has been tested in many types of malignancies, but not in chemoresistant mCRPC. Here, we report that such therapeutic approach may be exploited using the synergistic action of the antimetabolite gemcitabine (GEM) and CHK1 inhibitors SCH900776 and MU380 in docetaxel-resistant (DR) mCRPC. Given the results, both CHK1 inhibitors significantly potentiated the sensitivity to GEM in a panel of chemo-naïve and matched DR PCa cell lines under 2D conditions. MU380 exhibited a stronger synergistic effect with GEM than clinical candidate SCH900776. MU380 alone or in combination with GEM significantly reduced spheroid size and increased apoptosis in all patient-derived xenograft 3D cultures, with a higher impact in DR models. Combined treatment induced premature mitosis from G1 phase resulting in the mitotic catastrophe as a prestage of apoptosis. Finally, treatment by MU380 alone, or in combination with GEM, significantly inhibited tumor growth of both PC339-DOC and PC346C-DOC xenograft models in mice. Taken together, our data suggest that metabolically robust and selective CHK1 inhibitor MU380 can bypass docetaxel resistance and improve the effectiveness of GEM in DR mCRPC models. This approach might allow for dose reduction of GEM and thereby minimize undesired toxicity and may represent a therapeutic option for patients with incurable DR mCRPC.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Chemistry CZ Openscreen Faculty of Science Masaryk University Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Urology Experimental Urology Medical University of Innsbruck Austria
National Centre for Biomolecular Research Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Siegel RL, Miller KD & Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68, 7–30. PubMed
Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351, 1502–1512. PubMed
Lombard AP, Liu C, Armstrong CM, Cucchiara V, Gu X, Lou W, Evans CP & Gao AC (2017) ABCB1 mediates cabazitaxel‐docetaxel cross‐resistance in advanced prostate cancer. Mol Cancer Ther 16, 2257–2266. PubMed PMC
Liu M, Zeng T, Zhang X, Liu C, Wu Z, Yao Luming, Xie Changchuan, Xia Hui, Lin Qi, Xie L et al (2018) ATR/Chk1 signaling induces autophagy through sumoylated RhoB‐mediated lysosomal translocation of TSC2 after DNA damage. Nat Commun 9, 4139. PubMed PMC
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera J‐M, Montgomery B, Taplin M‐E, Pritchard CC, Attard G et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 162, 454. PubMed
Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, Goh C, Govindasami K, Guy M, O'Brien L et al (2012) Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 106, 1697–701. PubMed PMC
Eastham JA, Stapleton AM, Gousse AE, Timme TL, Yang G, Slawin KM, Wheeler TM, Scardino PT & Thompson TC (1995) Association of p53 mutations with metastatic prostate cancer. Clin Cancer Res 1, 1111–1118. PubMed
Cimprich KA & Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9, 616–627. PubMed PMC
Bartek J & Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19, 238–245. PubMed
Gonzalez Besteiro MA & Gottifredi V (2015) The fork and the kinase: a DNA replication tale from a CHK1 perspective. Mutat Res Rev Mutat Res 763, 168–180. PubMed PMC
Kastan MB & Bartek J (2004) Cell‐cycle checkpoints and cancer. Nature 432, 316–323. PubMed
Dai Y & Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res 16, 376–383. PubMed PMC
van Jaarsveld MTM, Deng D, Wiemer EAC & Zi Z (2019) Tissue‐specific Chk1 activation determines apoptosis by regulating the balance of p53 and p21. iScience 12, 27–40. PubMed PMC
Smith J, Tho LM, Xu N & Gillespie DA (2010) The ATM‐Chk2 and ATR‐Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108, 73–112. PubMed
Weber AM & Ryan AJ (2015) ATM and ATR as therapeutic targets in cancer. Pharmacol Ther 149, 124–138. PubMed
Zeman MK & Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16, 2–9. PubMed PMC
Karanika S, Karantanos T, Li L, Wang J, Park S, Yang G, Zuo X, Song JH, Maity SN, Manyam GC et al (2017) Targeting DNA damage response in prostate cancer by inhibiting androgen receptor‐CDC6‐ATR‐Chk1 signaling. Cell Rep 18, 1970–1981. PubMed PMC
Li L, Chang W, Yang G, Ren C, Park S, Karantanos T, Karanika S, Wang J, Yin J, Shah PK et al (2014) Targeting poly(ADP‐ribose) polymerase and the c‐Myb‐regulated DNA damage response pathway in castration‐resistant prostate cancer. Sci Signal 7, ra47. PubMed PMC
Samadder P, Suchankova T, Hylse O, Khirsariya P, Nikulenkov F, Drápela S, Straková N, Vaňhara P, Vašíčková K, Kolářová H et al (2017) Synthesis and profiling of a novel potent selective inhibitor of CHK1 kinase possessing unusual N‐trifluoromethylpyrazole pharmacophore resistant to metabolic N‐dealkylation. Mol Cancer Ther 16, 1831–1842. PubMed
Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig P‐A, Reinecke M, Ruprecht B, Petzoldt S, Meng C et al (2017) The target landscape of clinical kinase drugs. Science 358, eaan4368. PubMed PMC
Boudny M, Zemanova J, Khirsariya P, Borsky M, Verner J, Cerna J, Oltova A, Seda V, Mraz M, Jaros J et al (2019) Novel CHK1 inhibitor MU380 exhibits significant single‐agent activity in TP53‐mutated chronic lymphocytic leukemia cells. Haematologica 104, 2443–2455. PubMed PMC
Puhr M, Hoefer J, Schafer G, Erb HH, Oh SJ, Klocker H, Heidegger I, Neuwirt H & Culig Z (2012) Epithelial‐to‐mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR‐200c and miR‐205. Am J Pathol 181, 2188–2201. PubMed
O'Neill AJ, Prencipe M, Dowling C, Fan Y, Mulrane L, Mulrane L, Gallagher WM, O'Connor D, O'Connor R, Devery A et al (2011) Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol Cancer 10, 126. PubMed PMC
van Weerden WM, Bangma C & de Wit R (2009) Human xenograft models as useful tools to assess the potential of novel therapeutics in prostate cancer. Br J Cancer 100, 13–18. PubMed PMC
de Morree ES, Bottcher R, van Soest RJ, Aghai A, de Ridder CM, Gibson AA, Mathijssen RHJ, Burger H, Wiemer EAC, Sparreboom A et al (2016) Loss of SLCO1B3 drives taxane resistance in prostate cancer. Br J Cancer 115, 674–681. PubMed PMC
Patil M, Pabla N & Dong Z (2013) Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci 70, 4009–4021. PubMed PMC
Bryant C, Rawlinson R & Massey AJ (2014) Chk1 inhibition as a novel therapeutic strategy for treating triple‐negative breast and ovarian cancers. BMC Cancer 14, 570. PubMed PMC
Liang M, Zhao T, Ma L & Guo Y (2018) CHK1 inhibition sensitizes pancreatic cancer cells to gemcitabine via promoting CDK‐dependent DNA damage and ribonucleotide reductase downregulation. Oncol Rep 39, 1322–1330. PubMed
Koh SB, Courtin A, Boyce RJ, Boyle RG, Richards FM & Jodrell DI (2015) CHK1 inhibition synergizes with gemcitabine initially by destabilizing the DNA replication apparatus. Cancer Res 75, 3583–3595. PubMed
Isono M, Hoffmann MJ, Pinkerneil M, Sato A, Michaelis M, Cinatl J, Niegisch Günter & Schulz WA et al (2017) Checkpoint kinase inhibitor AZD7762 strongly sensitises urothelial carcinoma cells to gemcitabine. J Exp Clin Cancer Res 36, 1. PubMed PMC
Italiano A, Infante JR, Shapiro GI, Moore KN, LoRusso PM, Hamilton E, Cousin S, Toulmonde M, Postel‐Vinay S, Tolaney S et al (2018) Phase I study of the checkpoint kinase 1 inhibitor GDC‐0575 in combination with gemcitabine in patients with refractory solid tumors. Ann Oncol 29, 1304–1311. PubMed
Niida H, Katsuno Y, Banerjee B, Hande MP & Nakanishi M (2007) Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 27, 2572–2581. PubMed PMC
Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, Taricani L, Wiswell D, Seghezzi W, Penaflor E et al (2011) Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther 10, 591–602. PubMed
Laroche‐Clary A, Lucchesi C, Rey C, Verbeke S, Bourdon A, Chaire V, Algéo M‐P, Cousin S, Toulmonde M, Vélasco V et al (2018) CHK1 inhibition in soft‐tissue sarcomas: biological and clinical implications. Ann Oncol 29, 1023–1029. PubMed
Zemanova J, Hylse O, Collakova J, Vesely P, Oltova A, Borsky M, Zaprazna K, Kasparkova M, Janovska P, Verner J et al (2016) Chk1 inhibition significantly potentiates activity of nucleoside analogs in TP53‐mutated B‐lymphoid cells. Oncotarget 7, 62091–62106. PubMed PMC
Ma CX, Janetka JW & Piwnica‐Worms H (2011) Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 17, 88–96. PubMed PMC
Del Nagro CJ, Choi J, Xiao Y, Rangell L, Mohan S, Pandita A, Zha J, Jackson PK & O'Brien T (2014) Chk1 inhibition in p53‐deficient cell lines drives rapid chromosome fragmentation followed by caspase‐independent cell death. Cell Cycle 13, 303–314. PubMed PMC
Cappella P, Tomasoni D, Faretta M, Lupi M, Montalenti F, Viale F, Banzato F, D'Incalci M & Ubezio P (2001) Cell cycle effects of gemcitabine. Int J Cancer 93, 401–408. PubMed
Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, Vermeulen K, Lenjou M, de Pooter CMJ, Vermorken JB & Lardon F (2003) Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro . Int J Radiat Oncol Biol Phys 57, 1075–1083. PubMed
Merlin T, Brandner G & Hess RD (1998) Cell cycle arrest in ovarian cancer cell lines does not depend on p53 status upon treatment with cytostatic drugs. Int J Oncol 13, 1007–1016. PubMed
Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ, Denny WA, Canman CE, Kraker AJ, Lawrence TS et al (2009) Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther 8, 45–54. PubMed PMC
Syljuasen RG, Sorensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J & Bartek J (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25, 3553–3562. PubMed PMC
King C, Diaz HB, McNeely S, Barnard D, Dempsey J, Blosser W, Beckmann R, Barda D & Marshall MSs (2015) LY2606368 causes replication catastrophe and antitumor effects through CHK1‐dependent mechanisms. Mol Cancer Ther 14, 2004–2013. PubMed
Manic G, Signore M, Sistigu A, Russo G, Corradi F, Siteni S, Musella M, Vitale S, De Angelis ML, Pallocca M et al (2018) CHK1‐targeted therapy to deplete DNA replication‐stressed, p53‐deficient, hyperdiploid colorectal cancer stem cells. Gut 67, 903–917. PubMed PMC
Ma CX, Cai S, Li S, Ryan CE, Guo Z, Schaiff WT, Lin L, Hoog J, Goiffon RJ, Prat A et al (2012) Targeting Chk1 in p53‐deficient triple‐negative breast cancer is therapeutically beneficial in human‐in‐mouse tumor models. J Clin Invest 122, 1541–1552. PubMed PMC
Hwang BJ, Adhikary G, Eckert RL & Lu AL (2018) Chk1 inhibition as a novel therapeutic strategy in melanoma. Oncotarget 9, 30450–30464. PubMed PMC
David L, Fernandez‐Vidal A, Bertoli S, Grgurevic S, Lepage B, Deshaies D, Prade N, Cartel M, Larrue C, Sarry J‐E et al (2016) CHK1 as a therapeutic target to bypass chemoresistance in AML. Sci Signal 9, ra90. PubMed
Rundle S, Bradbury A, Drew Y & Curtin NJ (2017) Targeting the ATR‐CHK1 axis in cancer therapy. Cancers (Basel) 9, 41. PubMed PMC
Qiu Z, Oleinick NL & Zhang J (2018) ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 126, 450–464. PubMed PMC
Sekhar KR, Wang J, Freeman ML & Kirschner AN (2019) Radiosensitization by enzalutamide for human prostate cancer is mediated through the DNA damage repair pathway. PLoS One 14, e0214670. PubMed PMC
Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, Arora VK, Yen W‐F, Cai L, Zheng D et al (2013) Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 3, 1245–1253. PubMed PMC
Cronauer MV, Klocker H, Talasz H, Geisen FH, Hobisch A, Radmayr C, Böck G, Culig Z, Schirmer M, Reissigl A et al (1996) Inhibitory effects of the nucleoside analogue gemcitabine on prostatic carcinoma cells. Prostate 28, 172–181. PubMed
Morant R, Bernhard J, Maibach R, Borner M, Fey MF, Thürlimann B, Jacky E, Trinkler F, Bauer J, Zulian G et al (2000) Response and palliation in a phase II trial of gemcitabine in hormone‐refractory metastatic prostatic carcinoma. Swiss Group for Clinical Cancer Research (SAKK). Ann Oncol 11, 183–188. PubMed
Lee JL, Ahn JH, Choi MK, Kim Y, Hong SW, Lee K‐H, Jeong I‐G, Song C, Hong B‐S, Hong JH et al (2014) Gemcitabine‐oxaliplatin plus prednisolone is active in patients with castration‐resistant prostate cancer for whom docetaxel‐based chemotherapy failed. Br J Cancer 110, 2472–2478. PubMed PMC
Seo HK, Lee SJ, Kwon WA & Jeong KC (2020) Docetaxel‐resistant prostate cancer cells become sensitive to gemcitabine due to the upregulation of ABCB1. Prostate 80, 453–462. PubMed