Localization of METTL16 at the Nuclear Periphery and the Nucleolus Is Cell Cycle-Specific and METTL16 Interacts with Several Nucleolar Proteins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
68081707
Internal support of the Institute of Biophysics of the Czech Academy of Sciences
PubMed
34357041
PubMed Central
PMC8305168
DOI
10.3390/life11070669
PII: life11070669
Knihovny.cz E-zdroje
- Klíčová slova
- METTL16, cell cycle, epitranscriptome, nucleolus, rDNA,
- Publikační typ
- časopisecké články MeSH
METTL16 methyltransferase is responsible for the methylation of N6-adenosine (m6A) in several RNAs. In mouse cells, we showed that the nuclear distribution of METTL16 is cell cycle-specific. In the G1/S phases, METTL16 accumulates to the nucleolus, while in the G2 phase, the level of METTL16 increases in the nucleoplasm. In metaphase and anaphase, there is a very low pool of the METTL16 protein, but in telophase, residual METTL16 appears to be associated with the newly formed nuclear lamina. In A-type lamin-depleted cells, we observed a reduction of METTL16 when compared with the wild-type counterpart. However, METTL16 does not interact with A-type and B-type lamins, but interacts with Lamin B Receptor (LBR) and Lap2α. Additionally, Lap2α depletion caused METTL16 downregulation in the nuclear pool. Furthermore, METTL16 interacted with DDB2, a key protein of the nucleotide excision repair (NER), and also with nucleolar proteins, including TCOF, NOLC1, and UBF1/2, but not fibrillarin. From this view, the METTL16 protein may also regulate the transcription of ribosomal genes because we observed that the high level of m6A in 18S rRNA appeared in cells with upregulated METTL16.
Zobrazit více v PubMed
Liu J., Yue Y., Han D., Wang X., Fu Y., Zhang L., Jia G., Yu M., Lu Z., Deng X., et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 2014;10:93–95. doi: 10.1038/nchembio.1432. PubMed DOI PMC
Akichika S., Hirano S., Shichino Y., Suzuki T., Nishimasu H., Ishitani R., Sugita A., Hirose Y., Iwasaki S., Nureki O., et al. Cap-Specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science. 2019;363:doi10–1126. doi: 10.1126/science.aav0080. PubMed DOI
Ma H., Wang X., Cai J., Dai Q., Natchiar S.K., Lv R., Chen K., Lu Z., Chen H., Shi Y.G., et al. N6--Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 2019;15:88–94. doi: 10.1038/s41589-018-0184-3. PubMed DOI PMC
Van Tran N., Ernst F.G.M., Hawley B.R., Zorbas C., Ulryck N., Hackert P., Bohnsack K.E., Bohnsack M.T., Jaffrey S.R., Graille M., et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic. Acids. Res. 2019;47:7719–7733. doi: 10.1093/nar/gkz619. PubMed DOI PMC
Warda A.S., Kretschmer J., Hackert P., Lenz C., Urlaub H., Hobartner C., Sloan K.E., Bohnsack M.T. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18:2004–2014. doi: 10.15252/embr.201744940. PubMed DOI PMC
Jia G., Fu Y., Zhao X., Dai Q., Zheng G., Yang Y., Yi C., Lindahl T., Pan T., Yang Y.G., et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 2011;7:885–887. doi: 10.1038/nchembio.687. PubMed DOI PMC
Zheng G., Dahl J.A., Niu Y., Fedorcsak P., Huang C.M., Li C.J., Vagbo C.B., Shi Y., Wang W.L., Song S.H., et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell. 2013;49:18–29. doi: 10.1016/j.molcel.2012.10.015. PubMed DOI PMC
Xiang Y., Laurent B., Hsu C.H., Nachtergaele S., Luc Z., Sheng W., Xu C., Chen H., Ouyang J., Wang S., et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543:573–576. doi: 10.1038/nature21671. PubMed DOI PMC
Yue Y., Liu J., He C. RNA N6-Methyladenosine methylation in post-transcriptional geneexpression regulation. Genes Dev. 2015;29:1343–1355. doi: 10.1101/gad.262766.115. PubMed DOI PMC
Ruszkowska A. METTL16, methyltransferase-like protein 16: Current insights into structure and function. Int. Mol. Sci. 2021;22:2176. doi: 10.3390/ijms22042176. PubMed DOI PMC
Ruszkowska A., Ruszkowski M., Dauter Z., Brown J.A. Structural insights into the RNA methyltransferase domain of METTL16. Sci. Rep. 2018;8:5311. doi: 10.1038/s41598-018-23608-8. PubMed DOI PMC
Pendleton K.E., Chen B., Liu K., Hunter O.V., Xie Y., Tu B.P., Conrad N.K. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169:824–835.e14. doi: 10.1016/j.cell.2017.05.003. PubMed DOI PMC
Shima H., Matsumoto M., Ishigami Y., Ebina M., Muto A., Sato Y., Kumagai S., Ochiai K., Suzuki T., Igarashi K. S-Adenosylmethionine synthesis is regulated by selective N6-adenosine methylation and mRNA degradation Involving METTL16 and YTHDC1. Cell Rep. 2017;21:3354–3363. doi: 10.1016/j.celrep.2017.11.092. PubMed DOI
Brown J.A., Kinzig C.G., DeGregorio S.J., Steitz J.A. Methyltransferase-Like protein 16 binds the 3’-terminal triple helix of MALAT1 long non-coding RNA. Proc. Natl. Acad. Sci. USA. 2016;113:14013–14018. doi: 10.1073/pnas.1614759113. PubMed DOI PMC
Koh C.W.Q., Goh Y.T., Goh W.S.S. Atlas of quantitative single-base-resolution N6-methyl-adenine methylomes. Nat. Commun. 2019;10:5636. doi: 10.1038/s41467-019-13561-z. PubMed DOI PMC
Lence T., Paolantoni C., Worpenberg L., Roignant J.Y. Mechanistic insights into m6A RNA enzymes. Biochim. Biophys. Acta Gene Regul. Mech. 2019;1862:222–229. doi: 10.1016/j.bbagrm.2018.10.014. PubMed DOI
Mendel M., Chen K.M., Homolka D., Gos P., Pandey R.R., McCarthy A.A., Pillai R.S. Methylation of structured RNA by the m6A writer METTL16 Is essential for mouse embryonic development. Mol. Cell. 2018;71:986–1000.e11. doi: 10.1016/j.molcel.2018.08.004. PubMed DOI PMC
Dorsett M., Schedl T. A role for dynein in the inhibition of germ cell proliferative fate. Mol. Cell. Biol. 2009;29:6128–6139. doi: 10.1128/MCB.00815-09. PubMed DOI PMC
Svobodova Kovarikova A., Stixova L., Kovarik A., Komurkova D., Legartova S., Fagherazzi P., Bartova E. N6-Adenosine methylation in RNA and a reduced m3G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells. 2020;9:360. doi: 10.3390/cells9020360. PubMed DOI PMC
Naetar N., Korbei B., Kozlov S., Kerenyi M.A., Dorner D., Kral R., Gotic I., Fuchs P., Cohen T.V., Bittner R., et al. Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat. Cell. Biol. 2008;10:1341–1348. doi: 10.1038/ncb1793. PubMed DOI
Lukasova E., Kovarik A., Bacikova A., Falk M., Kozubek S. Loss of lamin B receptor is necessary to induce cellular senescence. Biochem. J. 2017;474:281–300. doi: 10.1042/BCJ20160459. PubMed DOI
Stixova L., Komurkova D., Svobodova Kovarikova A., Bartova E. UVA irradiation strengthened an interaction between UBF1/2 proteins and H4K20 di-/tri-methylation. Chromosome Res. 2019;27:41–55. doi: 10.1007/s10577-018-9596-x. PubMed DOI
Vecera J., Bartova E., Krejci J., Legartova S., Komurkova D., Ruda-Kucerova J., Stark T., Drazanova E., Kasparek T., Sulcova A., et al. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals. J. Cell. Physiol. 2018;233:530–548. doi: 10.1002/jcp.25914. PubMed DOI PMC
Horakova A.H., Bartova E., Galiova G., Uhlirova R., Matula P., Kozubek S. SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions. Chromosoma. 2010;119:227–241. doi: 10.1007/s00412-009-0252-2. PubMed DOI
Santoro R., Grummt I. Epigenetic mechanism of rRNA gene silencing: Temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol. Cell. Biol. 2005;25:2539–2546. doi: 10.1128/MCB.25.7.2539-2546.2005. PubMed DOI PMC
Nance D.J., Satterwhite E.R., Bhaskar B., Misra S., Carraway K.R., Mansfield K.D. Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS ONE. 2020;15:e0227647. doi: 10.1371/journal.pone.0227647. PubMed DOI PMC
Maiser A., Dillinger S., Langst G., Schermelleh L., Leonhardt H., Nemeth A. Super-resolution in situ analysis of active ribosomal DNA chromatin organization in the nucleolus. Sci. Rep. 2020;10:7462. doi: 10.1038/s41598-020-64589-x. PubMed DOI PMC
Doxtader K.A., Wang P., Scarborough A.M., Seo D., Conrad N.K., Nam Y. Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor. Mol. Cell. 2018;71:1001–1011.e4. doi: 10.1016/j.molcel.2018.07.025. PubMed DOI PMC
Xiang S., Gao M., Cao J., Shu X., Cheng M., Wang F., Deng T., Liu J. Precise identification of an RNA methyltransferase’s substrate modification site. Chem. Commun. 2021;57:2499–2502. doi: 10.1039/D0CC08260K. PubMed DOI
Mikutis S., Gu M., Sendinc E., Hazemi M.E., Kiely-Collins H., Aspris D., Vassiliou G.S., Shi Y., Tzelepis K., Bernardes G.J.L. meCLICK-Seq, a substrate-hijacking and RNA degradation strategy for the Study of RNA methylation. ACS Central Sci. 2020;6:2196–2208. doi: 10.1021/acscentsci.0c01094. PubMed DOI PMC
Li K., Luo H., Luo H., Zhu X. Clinical and prognostic pan-cancer analysis of m6A RNA methylation regulators in four types of endocrine system tumors. Aging. 2020;12:23931–23944. doi: 10.18632/aging.104064. PubMed DOI PMC
Wang S., Fan X., Zhu J., Xu D., Li R., Chen R., Hu J., Shen Y., Hao J., Wang K., et al. The differentiation of colorectal cancer is closely relevant to m6A modification. Biochem. Biophys. Res. Commun. 2021;546:65–73. doi: 10.1016/j.bbrc.2021.02.001. PubMed DOI
Arcidiacono O.A., Krejci J., Bartova E. The distinct function and localization of METTL3/METTL14 and METTL16 enzymes in cardiomyocytes. Int. J. Mol. Sci. 2020;21:8139. doi: 10.3390/ijms21218139. PubMed DOI PMC
Zhang J. Brothers in arms: Emerging roles of RNA epigenetics in DNA damage repair. Cell. Biosci. 2017;7:24. doi: 10.1186/s13578-017-0151-9. PubMed DOI PMC
Herrmann F., Pably P., Eckerich C., Bedford M.T., Fackelmayer F.O. Human protein arginine methyltransferases in vivo—distinct properties of eight canonical members of the PRMT family. J. Cell Sci. 2009;122:667–677. doi: 10.1242/jcs.039933. PubMed DOI
Zhang J., Ao Y., Zhang Z., Mo Y., Peng L., Jiang Y., Wang Z., Liu B. Lamin A safeguards the m6A methylase METTL14 nuclear speckle reservoir to prevent cellular senescence. Aging Cell. 2020;19:e13215. doi: 10.1111/acel.13215. PubMed DOI PMC