Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LO1302
Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS) - International
CZ.02.1.01/0.0/0.0/16_019/0000729
EC European Regional Development Fund (ERDF) - International
ANR-10-INBS-08-01
Agence Nationale de la Recherche (ANR) - International
170214
GrantováAgentura, Univerzita Karlova (GA UK) - International
PIRG08-GA-2010-276750
EC FP7 FP7 Ideas: European Research Council (FP7 Ideas) - International
Gilead Sciences & IOCB Research Centre - International
61388963
National Subvention for Development of Research Organisations - International
CNRS - International
PIRG08-GA-2010-276750
Marie-Curie International Reintegration Grant - International
Aix-Marseille University (AMU) - International
FDT20160435133
Fondation pour la Recherche Médicale - International
18-09556S
Czech Science Foundation - International
PubMed
31930742
PubMed Central
PMC7231995
DOI
10.15252/embj.2019102935
Knihovny.cz E-zdroje
- Klíčová slova
- ER-associated degradation, intramembrane protease, membrane transporter, proteostasis, rhomboid,
- MeSH
- ATPázy spojené s různými buněčnými aktivitami metabolismus MeSH
- Bacillus subtilis růst a vývoj metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- endopeptidasy metabolismus MeSH
- membránové proteiny metabolismus MeSH
- proteomika metody MeSH
- regulace genové exprese u bakterií MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATPázy spojené s různými buněčnými aktivitami MeSH
- bakteriální proteiny MeSH
- endopeptidasy MeSH
- membránové proteiny MeSH
Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane-bound ATP-dependent processive metalloprotease FtsH and cleaves MgtE, the major high-affinity magnesium transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+ /Zn2+ toxicity. The N-terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER-associated degradation (ERAD). Conceptually, the YqgP-FtsH system we describe here is analogous to a primordial form of "ERAD" in bacteria and exemplifies an ancestral function of rhomboid-superfamily proteins.
CEA Inserm IRIG BGE Univ Grenoble Alpes Grenoble France
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Science Prague Czech Republic
Laboratoire de Chimie Bactérienne CNRS UMR 7283 Aix Marseille Univ Marseille Cedex 20 France
Zobrazit více v PubMed
Adrain C, Freeman M (2012) New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat Rev Mol Cell Biol 13: 489–498 PubMed
Akiyama Y (2003) Reconstitution of membrane proteolysis by FtsH. J Biol Chem 278: 18146–18153 PubMed
Alix E, Blanc‐Potard AB (2008) Peptide‐assisted degradation of the Salmonella MgtC virulence factor. EMBO J 27: 546–557 PubMed PMC
Baker RP, Urban S (2012) Architectural and thermodynamic principles underlying intramembrane protease function. Nat Chem Biol 8: 759–768 PubMed PMC
Blackwell KJ, Tobin JM, Avery SV (1997) Manganese uptake and toxicity in magnesium‐supplemented and unsupplemented Saccharomyces cerevisiae . Appl Microbiol Biotechnol 47: 180–184 PubMed
Campo N, Rudner DZ (2006) A branched pathway governing the activation of a developmental transcription factor by regulated intramembrane proteolysis. Mol Cell 23: 25–35 PubMed
Casabona MG, Vandenbrouck Y, Attree I, Coute Y (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics 13: 2419–2423 PubMed
Chandrangsu P, Rensing C, Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15: 338–350 PubMed PMC
Chiba S, Akiyama Y, Ito K (2002) Membrane protein degradation by FtsH can be initiated from either end. J Bacteriol 184: 4775–4782 PubMed PMC
Costa MI, Cerletti M, Paggi RA, Trotschel C, De Castro RE, Poetsch A, Gimenez MI (2018) Haloferax volcanii proteome response to deletion of a rhomboid protease gene. J Proteome Res 17: 961–977 PubMed
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nat Biotechnol 26: 1367–1372 PubMed
Dambach M, Sandoval M, Updegrove TB, Anantharaman V, Aravind L, Waters LS, Storz G (2015) The ubiquitous yybP‐ykoY riboswitch is a manganese‐responsive regulatory element. Mol Cell 57: 1099–1109 PubMed PMC
Dann CE III, Wakeman CA, Sieling CL, Baker SC, Irnov I, Winkler WC (2007) Structure and mechanism of a metal‐sensing regulatory RNA. Cell 130: 878–892 PubMed
Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez‐Riverol Y, Ternent T, Campbell DS, Bernal‐Llinares M, Okuda S, Kawano S et al (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 45: D1100–D1106 PubMed PMC
Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, Pinho MG, Walker S (2020) Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat Microbiol 5: 291–303 PubMed PMC
Doan T, Morlot C, Meisner J, Serrano M, Henriques AO, Moran CP Jr, Rudner DZ (2009) Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis . PLoS Genet 5: e1000566 PubMed PMC
Erez E, Bibi E (2009) Cleavage of a multispanning membrane protein by an intramembrane serine protease. Biochemistry 48: 12314–12322 PubMed
Foster AW, Osman D, Robinson NJ (2014) Metal preferences and metallation. J Biol Chem 289: 28095–28103 PubMed PMC
Freeman M (2014) The rhomboid‐like superfamily: molecular mechanisms and biological roles. Annu Rev Cell Dev Biol 30: 235–254 PubMed
Froschauer EM, Kolisek M, Dieterich F, Schweigel M, Schweyen RJ (2004) Fluorescence measurements of free [Mg2+] by use of mag‐fura 2 in Salmonella enterica . FEMS Microbiol Lett 237: 49–55 PubMed
Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498: 349–361 PubMed PMC
Gransee A, Fuhrs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368: 5–21
Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH (2013) Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet 47: 625–646 PubMed PMC
Harjes E, Harjes S, Wohlgemuth S, Muller KH, Krieger E, Herrmann C, Bayer P (2006) GTP‐Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Structure 14: 881–888 PubMed
Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. Chichester; New York, NY: Wiley;
Hattori M, Tanaka Y, Fukai S, Ishitani R, Nureki O (2007) Crystal structure of the MgtE Mg2+ transporter. Nature 448: 1072–1075 PubMed
Hattori M, Iwase N, Furuya N, Tanaka Y, Tsukazaki T, Ishitani R, Maguire ME, Ito K, Maturana A, Nureki O (2009) Mg2+‐dependent gating of bacterial MgtE channel underlies Mg2+ homeostasis. EMBO J 28: 3602–3612 PubMed PMC
Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319: 209–227 PubMed
Hohle TH, O'Brian MR (2014) Magnesium‐dependent processes are targets of bacterial manganese toxicity. Mol Microbiol 93: 736–747 PubMed PMC
Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44: W351–W355 PubMed PMC
Huang X, Shin JH, Pinochet‐Barros A, Su TT, Helmann JD (2017) Bacillus subtilis MntR coordinates the transcriptional regulation of manganese uptake and efflux systems. Mol Microbiol 103: 253–268 PubMed PMC
Ivankov DN, Bogatyreva NS, Honigschmid P, Dislich B, Hogl S, Kuhn PH, Frishman D, Lichtenthaler SF (2013) QARIP: a web server for quantitative proteomic analysis of regulated intramembrane proteolysis. Nucleic Acids Res 41: W459–W464 PubMed PMC
Jaquinod M, Trauchessec M, Huillet C, Louwagie M, Lebert D, Picard G, Adrait A, Dupuis A, Garin J, Brun V et al (2012) Mass spectrometry‐based absolute protein quantification: PSAQ strategy makes use of “noncanonical” proteotypic peptides. Proteomics 12: 1217–1221 PubMed
Johnson N, Brezinova J, Stephens E, Burbridge E, Freeman M, Adrain C, Strisovsky K (2017) Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis. Sci Rep 7: 7283 PubMed PMC
Kachalova GS, Rogulin EA, Yunusova AK, Artyukh RI, Perevyazova TA, Matvienko NI, Zheleznaya LA, Bartunik HD (2008) Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site‐specific nickase and a catalytic subunit. J Mol Biol 384: 489–502 PubMed
Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338: 1027–1036 PubMed
Kinch LN, Grishin NV (2013) Bioinformatics perspective on rhomboid intramembrane protease evolution and function. Biochim Biophys Acta 1828: 2937–2943 PubMed PMC
Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM et al (2017) Construction and analysis of two genome‐scale deletion libraries for Bacillus subtilis . Cell Syst 4: 291–305 e7 PubMed PMC
Koonin EV, Makarova KS, Rogozin IB, Davidovic L, Letellier MC, Pellegrini L (2003) The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol 4: R19 PubMed PMC
Kota J, Gilstring CF, Ljungdahl PO (2007) Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD. J Cell Biol 176: 617–628 PubMed PMC
Kreutzberger AJB, Ji M, Aaron J, Mihaljevic L, Urban S (2019) Rhomboid distorts lipids to break the viscosity‐imposed speed limit of membrane diffusion. Science 363: eaao0076 PubMed PMC
Langklotz S, Baumann U, Narberhaus F (2012) Structure and function of the bacterial AAA protease FtsH. Biochim Biophys Acta 1823: 40–48 PubMed
Lauwers E, Erpapazoglou Z, Haguenauer‐Tsapis R, Andre B (2010) The ubiquitin code of yeast permease trafficking. Trends Cell Biol 20: 196–204 PubMed
Lee EJ, Pontes MH, Groisman EA (2013) A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F1Fo ATP synthase. Cell 154: 146–156 PubMed PMC
Lemberg MK, Martoglio B (2003) Analysis of polypeptides by sodium dodecyl sulfate–polyacrylamide gel electrophoresis alongside in vitro‐generated reference peptides. Anal Biochem 319: 327–331 PubMed
Lemberg MK, Menendez J, Misik A, Garcia M, Koth CM, Freeman M (2005) Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J 24: 464–472 PubMed PMC
Loureiro J, Lilley BN, Spooner E, Noriega V, Tortorella D, Ploegh HL (2006) Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature 441: 894–897 PubMed
Maruyama T, Imai S, Kusakizako T, Hattori M, Ishitani R, Nureki O, Ito K, Maturana AD, Shimada I, Osawa M (2018) Functional roles of Mg(2+) binding sites in ion‐dependent gating of a Mg(2+) channel, MgtE, revealed by solution NMR. Elife 7: e31596 PubMed PMC
Mesak LR, Mesak FM, Dahl MK (2004) Expression of a novel gene, gluP, is essential for normal Bacillus subtilis cell division and contributes to glucose export. BMC Microbiol 4: 13 PubMed PMC
Neal S, Jaeger PA, Duttke SH, Benner C, Glass CK, Ideker T, Hampton RY (2018) The Dfm1 Derlin is required for ERAD retrotranslocation of integral membrane proteins. Mol Cell 69: 306–320 e4 PubMed PMC
Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S et al (2012) Condition‐dependent transcriptome reveals high‐level regulatory architecture in Bacillus subtilis . Science 335: 1103–1106 PubMed
Pang T, Wang X, Lim HC, Bernhardt TG, Rudner DZ (2017) The nucleoid occlusion factor Noc controls DNA replication initiation in Staphylococcus aureus . PLoS Genet 13: e1006908 PubMed PMC
Parente J, Casabuono A, Ferrari MC, Paggi RA, De Castro RE, Couto AS, Gimenez MI (2014) A rhomboid protease gene deletion affects a novel oligosaccharide N‐linked to the S‐layer glycoprotein of Haloferax volcanii . J Biol Chem 289: 11304–11317 PubMed PMC
Perez‐Riverol Y, Csordas A, Bai J, Bernal‐Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47: D442–D450 PubMed PMC
Pontes MH, Sevostyanova A, Groisman EA (2015) When too much ATP is bad for protein synthesis. J Mol Biol 427: 2586–2594 PubMed PMC
Pontes MH, Yeom J, Groisman EA (2016) Reducing ribosome biosynthesis promotes translation during low Mg(2+) stress. Mol Cell 64: 480–492 PubMed PMC
Price IR, Gaballa A, Ding F, Helmann JD, Ke A (2015) Mn(2+)‐sensing mechanisms of yybP‐ykoY orphan riboswitches. Mol Cell 57: 1110–1123 PubMed PMC
Que Q, Helmann JD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35: 1454–1468 PubMed
Renshaw PS, Veverka V, Kelly G, Frenkiel TA, Williamson RA, Gordon SV, Hewinson RG, Carr MD (2004) Sequence‐specific assignment and secondary structure determination of the 195‐residue complex formed by the Mycobacterium tuberculosis proteins CFP‐10 and ESAT‐6. J Biomol NMR 30: 225–226 PubMed
Riestra AM, Gandhi S, Sweredoski MJ, Moradian A, Hess S, Urban S, Johnson PJ (2015) A Trichomonas vaginalis rhomboid protease and its substrate modulate parasite attachment and cytolysis of host cells. PLoS Pathog 11: e1005294 PubMed PMC
Russell CW, Richards AC, Chang AS, Mulvey MA (2017) The rhomboid protease GlpG promotes the persistence of extraintestinal pathogenic Escherichia coli within the gut. Infect Immun 85: e00866‐16 PubMed PMC
Saita S, Nolte H, Fiedler KU, Kashkar H, Venne AS, Zahedi RP, Kruger M, Langer T (2017) PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat Cell Biol 19: 318–328 PubMed
Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44: 213–223 PubMed PMC
Smith RL, Thompson LJ, Maguire ME (1995) Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J Bacteriol 177: 1233–1238 PubMed PMC
Stevenson LG, Strisovsky K, Clemmer KM, Bhatt S, Freeman M, Rather PN (2007) Rhomboid protease AarA mediates quorum‐sensing in Providencia stuartii by activating TatA of the twin‐arginine translocase. Proc Natl Acad Sci USA 104: 1003–1008 PubMed PMC
Strisovsky K, Sharpe HJ, Freeman M (2009) Sequence‐specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol Cell 36: 1048–1059 PubMed PMC
Strisovsky K (2013) Structural and mechanistic principles of intramembrane proteolysis–lessons from rhomboids. FEBS J 280: 1579–1603 PubMed
Strisovsky K (2016) Why cells need intramembrane proteases – a mechanistic perspective. FEBS J 283: 1837–1845 PubMed
Takeda H, Hattori M, Nishizawa T, Yamashita K, Shah ST, Caffrey M, Maturana AD, Ishitani R, Nureki O (2014) Structural basis for ion selectivity revealed by high‐resolution crystal structure of Mg2+ channel MgtE. Nat Commun 5: 5374 PubMed PMC
Thomas FM, Sprenger S (2008) Responses of two closely related oak species, Quercus robur and Q. petraea, to excess manganese concentrations in the rooting medium. Tree Physiol 28: 343–353 PubMed
Ticha A, Stanchev S, Skerle J, Began J, Ingr M, Svehlova K, Polovinkin L, Ruzicka M, Bednarova L, Hadravova R et al (2017a) Sensitive versatile fluorogenic transmembrane peptide substrates for rhomboid intramembrane proteases. J Biol Chem 292: 2703–2713 PubMed PMC
Ticha A, Stanchev S, Vinothkumar KR, Mikles DC, Pachl P, Began J, Skerle J, Svehlova K, Nguyen MTN, Verhelst SHL et al (2017b) General and modular strategy for designing potent, selective, and pharmacologically compliant inhibitors of rhomboid proteases. Cell Chem Biol 24: 1523–1536 e4 PubMed PMC
Ticha A, Collis B, Strisovsky K (2018) The rhomboid superfamily: structural mechanisms and chemical biology opportunities. Trends Biochem Sci 43: 726–739 PubMed
Tomita A, Zhang M, Jin F, Zhuang W, Takeda H, Maruyama T, Osawa M, Hashimoto KI, Kawasaki H, Ito K et al (2017) ATP‐dependent modulation of MgtE in Mg2+ homeostasis. Nat Commun 8: 148 PubMed PMC
Urban S, Lee JR, Freeman M (2002a) A family of rhomboid intramembrane proteases activates all Drosophila membrane‐tethered EGF ligands. EMBO J 21: 4277–4286 PubMed PMC
Urban S, Schlieper D, Freeman M (2002b) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr Biol 12: 1507–1512 PubMed
Urban S, Wolfe MS (2005) Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc Natl Acad Sci USA 102: 1883–1888 PubMed PMC
Urban S (2016) A guide to the rhomboid protein superfamily in development and disease. Semin Cell Dev Biol 60: 1–4 PubMed
Veverka V, Lennie G, Crabbe T, Bird I, Taylor RJ, Carr MD (2006) NMR assignment of the mTOR domain responsible for rapamycin binding. J Biomol NMR 36(Suppl 1): 3 PubMed
Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105: 14371–14376 PubMed PMC
Wakeman CA, Goodson JR, Zacharia VM, Winkler WC (2014) Assessment of the requirements for magnesium transporters in Bacillus subtilis . J Bacteriol 196: 1206–1214 PubMed PMC
Wang Y, Zhang Y, Ha Y (2006) Crystal structure of a rhomboid family intramembrane protease. Nature 444: 179–180 PubMed
Yang Y, Guo R, Gaffney K, Kim M, Muhammednazaar S, Tian W, Wang B, Liang J, Hong H (2018) Folding‐degradation relationship of a membrane protein mediated by the universally conserved ATP‐dependent protease FtsH. J Am Chem Soc 140: 4656–4665 PubMed PMC
Zeytuni N, Zarivach R (2012) Structural and functional discussion of the tetra‐trico‐peptide repeat, a protein interaction module. Structure 20: 397–405 PubMed
Zoll S, Stanchev S, Began J, Skerle J, Lepsik M, Peclinovska L, Majer P, Strisovsky K (2014) Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate‐peptide complex structures. EMBO J 33: 2408–2421 PubMed PMC
4-Oxo-β-lactams as Covalent Inhibitors of the Mitochondrial Intramembrane Protease PARL
PDB
6R0J