Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease

. 2020 May 18 ; 39 (10) : e102935. [epub] 20200113

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31930742

Grantová podpora
LO1302 Ministerstvo Školství, Mládeže a Tělovýchovy (MEYS) - International
CZ.02.1.01/0.0/0.0/16_019/0000729 EC European Regional Development Fund (ERDF) - International
ANR-10-INBS-08-01 Agence Nationale de la Recherche (ANR) - International
170214 GrantováAgentura, Univerzita Karlova (GA UK) - International
PIRG08-GA-2010-276750 EC FP7 FP7 Ideas: European Research Council (FP7 Ideas) - International
Gilead Sciences & IOCB Research Centre - International
61388963 National Subvention for Development of Research Organisations - International
CNRS - International
PIRG08-GA-2010-276750 Marie-Curie International Reintegration Grant - International
Aix-Marseille University (AMU) - International
FDT20160435133 Fondation pour la Recherche Médicale - International
18-09556S Czech Science Foundation - International

Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane-bound ATP-dependent processive metalloprotease FtsH and cleaves MgtE, the major high-affinity magnesium transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+ /Zn2+ toxicity. The N-terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER-associated degradation (ERAD). Conceptually, the YqgP-FtsH system we describe here is analogous to a primordial form of "ERAD" in bacteria and exemplifies an ancestral function of rhomboid-superfamily proteins.

Komentář v

PubMed

Zobrazit více v PubMed

Adrain C, Freeman M (2012) New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat Rev Mol Cell Biol 13: 489–498 PubMed

Akiyama Y (2003) Reconstitution of membrane proteolysis by FtsH. J Biol Chem 278: 18146–18153 PubMed

Alix E, Blanc‐Potard AB (2008) Peptide‐assisted degradation of the Salmonella MgtC virulence factor. EMBO J 27: 546–557 PubMed PMC

Baker RP, Urban S (2012) Architectural and thermodynamic principles underlying intramembrane protease function. Nat Chem Biol 8: 759–768 PubMed PMC

Blackwell KJ, Tobin JM, Avery SV (1997) Manganese uptake and toxicity in magnesium‐supplemented and unsupplemented Saccharomyces cerevisiae . Appl Microbiol Biotechnol 47: 180–184 PubMed

Campo N, Rudner DZ (2006) A branched pathway governing the activation of a developmental transcription factor by regulated intramembrane proteolysis. Mol Cell 23: 25–35 PubMed

Casabona MG, Vandenbrouck Y, Attree I, Coute Y (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics 13: 2419–2423 PubMed

Chandrangsu P, Rensing C, Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15: 338–350 PubMed PMC

Chiba S, Akiyama Y, Ito K (2002) Membrane protein degradation by FtsH can be initiated from either end. J Bacteriol 184: 4775–4782 PubMed PMC

Costa MI, Cerletti M, Paggi RA, Trotschel C, De Castro RE, Poetsch A, Gimenez MI (2018) Haloferax volcanii proteome response to deletion of a rhomboid protease gene. J Proteome Res 17: 961–977 PubMed

Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nat Biotechnol 26: 1367–1372 PubMed

Dambach M, Sandoval M, Updegrove TB, Anantharaman V, Aravind L, Waters LS, Storz G (2015) The ubiquitous yybP‐ykoY riboswitch is a manganese‐responsive regulatory element. Mol Cell 57: 1099–1109 PubMed PMC

Dann CE III, Wakeman CA, Sieling CL, Baker SC, Irnov I, Winkler WC (2007) Structure and mechanism of a metal‐sensing regulatory RNA. Cell 130: 878–892 PubMed

Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez‐Riverol Y, Ternent T, Campbell DS, Bernal‐Llinares M, Okuda S, Kawano S et al (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 45: D1100–D1106 PubMed PMC

Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, Pinho MG, Walker S (2020) Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat Microbiol 5: 291–303 PubMed PMC

Doan T, Morlot C, Meisner J, Serrano M, Henriques AO, Moran CP Jr, Rudner DZ (2009) Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis . PLoS Genet 5: e1000566 PubMed PMC

Erez E, Bibi E (2009) Cleavage of a multispanning membrane protein by an intramembrane serine protease. Biochemistry 48: 12314–12322 PubMed

Foster AW, Osman D, Robinson NJ (2014) Metal preferences and metallation. J Biol Chem 289: 28095–28103 PubMed PMC

Freeman M (2014) The rhomboid‐like superfamily: molecular mechanisms and biological roles. Annu Rev Cell Dev Biol 30: 235–254 PubMed

Froschauer EM, Kolisek M, Dieterich F, Schweigel M, Schweyen RJ (2004) Fluorescence measurements of free [Mg2+] by use of mag‐fura 2 in Salmonella enterica . FEMS Microbiol Lett 237: 49–55 PubMed

Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498: 349–361 PubMed PMC

Gransee A, Fuhrs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368: 5–21

Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH (2013) Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet 47: 625–646 PubMed PMC

Harjes E, Harjes S, Wohlgemuth S, Muller KH, Krieger E, Herrmann C, Bayer P (2006) GTP‐Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Structure 14: 881–888 PubMed

Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. Chichester; New York, NY: Wiley;

Hattori M, Tanaka Y, Fukai S, Ishitani R, Nureki O (2007) Crystal structure of the MgtE Mg2+ transporter. Nature 448: 1072–1075 PubMed

Hattori M, Iwase N, Furuya N, Tanaka Y, Tsukazaki T, Ishitani R, Maguire ME, Ito K, Maturana A, Nureki O (2009) Mg2+‐dependent gating of bacterial MgtE channel underlies Mg2+ homeostasis. EMBO J 28: 3602–3612 PubMed PMC

Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319: 209–227 PubMed

Hohle TH, O'Brian MR (2014) Magnesium‐dependent processes are targets of bacterial manganese toxicity. Mol Microbiol 93: 736–747 PubMed PMC

Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44: W351–W355 PubMed PMC

Huang X, Shin JH, Pinochet‐Barros A, Su TT, Helmann JD (2017) Bacillus subtilis MntR coordinates the transcriptional regulation of manganese uptake and efflux systems. Mol Microbiol 103: 253–268 PubMed PMC

Ivankov DN, Bogatyreva NS, Honigschmid P, Dislich B, Hogl S, Kuhn PH, Frishman D, Lichtenthaler SF (2013) QARIP: a web server for quantitative proteomic analysis of regulated intramembrane proteolysis. Nucleic Acids Res 41: W459–W464 PubMed PMC

Jaquinod M, Trauchessec M, Huillet C, Louwagie M, Lebert D, Picard G, Adrait A, Dupuis A, Garin J, Brun V et al (2012) Mass spectrometry‐based absolute protein quantification: PSAQ strategy makes use of “noncanonical” proteotypic peptides. Proteomics 12: 1217–1221 PubMed

Johnson N, Brezinova J, Stephens E, Burbridge E, Freeman M, Adrain C, Strisovsky K (2017) Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis. Sci Rep 7: 7283 PubMed PMC

Kachalova GS, Rogulin EA, Yunusova AK, Artyukh RI, Perevyazova TA, Matvienko NI, Zheleznaya LA, Bartunik HD (2008) Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site‐specific nickase and a catalytic subunit. J Mol Biol 384: 489–502 PubMed

Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338: 1027–1036 PubMed

Kinch LN, Grishin NV (2013) Bioinformatics perspective on rhomboid intramembrane protease evolution and function. Biochim Biophys Acta 1828: 2937–2943 PubMed PMC

Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM et al (2017) Construction and analysis of two genome‐scale deletion libraries for Bacillus subtilis . Cell Syst 4: 291–305 e7 PubMed PMC

Koonin EV, Makarova KS, Rogozin IB, Davidovic L, Letellier MC, Pellegrini L (2003) The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol 4: R19 PubMed PMC

Kota J, Gilstring CF, Ljungdahl PO (2007) Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD. J Cell Biol 176: 617–628 PubMed PMC

Kreutzberger AJB, Ji M, Aaron J, Mihaljevic L, Urban S (2019) Rhomboid distorts lipids to break the viscosity‐imposed speed limit of membrane diffusion. Science 363: eaao0076 PubMed PMC

Langklotz S, Baumann U, Narberhaus F (2012) Structure and function of the bacterial AAA protease FtsH. Biochim Biophys Acta 1823: 40–48 PubMed

Lauwers E, Erpapazoglou Z, Haguenauer‐Tsapis R, Andre B (2010) The ubiquitin code of yeast permease trafficking. Trends Cell Biol 20: 196–204 PubMed

Lee EJ, Pontes MH, Groisman EA (2013) A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F1Fo ATP synthase. Cell 154: 146–156 PubMed PMC

Lemberg MK, Martoglio B (2003) Analysis of polypeptides by sodium dodecyl sulfate–polyacrylamide gel electrophoresis alongside in vitro‐generated reference peptides. Anal Biochem 319: 327–331 PubMed

Lemberg MK, Menendez J, Misik A, Garcia M, Koth CM, Freeman M (2005) Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J 24: 464–472 PubMed PMC

Loureiro J, Lilley BN, Spooner E, Noriega V, Tortorella D, Ploegh HL (2006) Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature 441: 894–897 PubMed

Maruyama T, Imai S, Kusakizako T, Hattori M, Ishitani R, Nureki O, Ito K, Maturana AD, Shimada I, Osawa M (2018) Functional roles of Mg(2+) binding sites in ion‐dependent gating of a Mg(2+) channel, MgtE, revealed by solution NMR. Elife 7: e31596 PubMed PMC

Mesak LR, Mesak FM, Dahl MK (2004) Expression of a novel gene, gluP, is essential for normal Bacillus subtilis cell division and contributes to glucose export. BMC Microbiol 4: 13 PubMed PMC

Neal S, Jaeger PA, Duttke SH, Benner C, Glass CK, Ideker T, Hampton RY (2018) The Dfm1 Derlin is required for ERAD retrotranslocation of integral membrane proteins. Mol Cell 69: 306–320 e4 PubMed PMC

Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S et al (2012) Condition‐dependent transcriptome reveals high‐level regulatory architecture in Bacillus subtilis . Science 335: 1103–1106 PubMed

Pang T, Wang X, Lim HC, Bernhardt TG, Rudner DZ (2017) The nucleoid occlusion factor Noc controls DNA replication initiation in Staphylococcus aureus . PLoS Genet 13: e1006908 PubMed PMC

Parente J, Casabuono A, Ferrari MC, Paggi RA, De Castro RE, Couto AS, Gimenez MI (2014) A rhomboid protease gene deletion affects a novel oligosaccharide N‐linked to the S‐layer glycoprotein of Haloferax volcanii . J Biol Chem 289: 11304–11317 PubMed PMC

Perez‐Riverol Y, Csordas A, Bai J, Bernal‐Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47: D442–D450 PubMed PMC

Pontes MH, Sevostyanova A, Groisman EA (2015) When too much ATP is bad for protein synthesis. J Mol Biol 427: 2586–2594 PubMed PMC

Pontes MH, Yeom J, Groisman EA (2016) Reducing ribosome biosynthesis promotes translation during low Mg(2+) stress. Mol Cell 64: 480–492 PubMed PMC

Price IR, Gaballa A, Ding F, Helmann JD, Ke A (2015) Mn(2+)‐sensing mechanisms of yybP‐ykoY orphan riboswitches. Mol Cell 57: 1110–1123 PubMed PMC

Que Q, Helmann JD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35: 1454–1468 PubMed

Renshaw PS, Veverka V, Kelly G, Frenkiel TA, Williamson RA, Gordon SV, Hewinson RG, Carr MD (2004) Sequence‐specific assignment and secondary structure determination of the 195‐residue complex formed by the Mycobacterium tuberculosis proteins CFP‐10 and ESAT‐6. J Biomol NMR 30: 225–226 PubMed

Riestra AM, Gandhi S, Sweredoski MJ, Moradian A, Hess S, Urban S, Johnson PJ (2015) A Trichomonas vaginalis rhomboid protease and its substrate modulate parasite attachment and cytolysis of host cells. PLoS Pathog 11: e1005294 PubMed PMC

Russell CW, Richards AC, Chang AS, Mulvey MA (2017) The rhomboid protease GlpG promotes the persistence of extraintestinal pathogenic Escherichia coli within the gut. Infect Immun 85: e00866‐16 PubMed PMC

Saita S, Nolte H, Fiedler KU, Kashkar H, Venne AS, Zahedi RP, Kruger M, Langer T (2017) PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat Cell Biol 19: 318–328 PubMed

Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44: 213–223 PubMed PMC

Smith RL, Thompson LJ, Maguire ME (1995) Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J Bacteriol 177: 1233–1238 PubMed PMC

Stevenson LG, Strisovsky K, Clemmer KM, Bhatt S, Freeman M, Rather PN (2007) Rhomboid protease AarA mediates quorum‐sensing in Providencia stuartii by activating TatA of the twin‐arginine translocase. Proc Natl Acad Sci USA 104: 1003–1008 PubMed PMC

Strisovsky K, Sharpe HJ, Freeman M (2009) Sequence‐specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol Cell 36: 1048–1059 PubMed PMC

Strisovsky K (2013) Structural and mechanistic principles of intramembrane proteolysis–lessons from rhomboids. FEBS J 280: 1579–1603 PubMed

Strisovsky K (2016) Why cells need intramembrane proteases – a mechanistic perspective. FEBS J 283: 1837–1845 PubMed

Takeda H, Hattori M, Nishizawa T, Yamashita K, Shah ST, Caffrey M, Maturana AD, Ishitani R, Nureki O (2014) Structural basis for ion selectivity revealed by high‐resolution crystal structure of Mg2+ channel MgtE. Nat Commun 5: 5374 PubMed PMC

Thomas FM, Sprenger S (2008) Responses of two closely related oak species, Quercus robur and Q. petraea, to excess manganese concentrations in the rooting medium. Tree Physiol 28: 343–353 PubMed

Ticha A, Stanchev S, Skerle J, Began J, Ingr M, Svehlova K, Polovinkin L, Ruzicka M, Bednarova L, Hadravova R et al (2017a) Sensitive versatile fluorogenic transmembrane peptide substrates for rhomboid intramembrane proteases. J Biol Chem 292: 2703–2713 PubMed PMC

Ticha A, Stanchev S, Vinothkumar KR, Mikles DC, Pachl P, Began J, Skerle J, Svehlova K, Nguyen MTN, Verhelst SHL et al (2017b) General and modular strategy for designing potent, selective, and pharmacologically compliant inhibitors of rhomboid proteases. Cell Chem Biol 24: 1523–1536 e4 PubMed PMC

Ticha A, Collis B, Strisovsky K (2018) The rhomboid superfamily: structural mechanisms and chemical biology opportunities. Trends Biochem Sci 43: 726–739 PubMed

Tomita A, Zhang M, Jin F, Zhuang W, Takeda H, Maruyama T, Osawa M, Hashimoto KI, Kawasaki H, Ito K et al (2017) ATP‐dependent modulation of MgtE in Mg2+ homeostasis. Nat Commun 8: 148 PubMed PMC

Urban S, Lee JR, Freeman M (2002a) A family of rhomboid intramembrane proteases activates all Drosophila membrane‐tethered EGF ligands. EMBO J 21: 4277–4286 PubMed PMC

Urban S, Schlieper D, Freeman M (2002b) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr Biol 12: 1507–1512 PubMed

Urban S, Wolfe MS (2005) Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc Natl Acad Sci USA 102: 1883–1888 PubMed PMC

Urban S (2016) A guide to the rhomboid protein superfamily in development and disease. Semin Cell Dev Biol 60: 1–4 PubMed

Veverka V, Lennie G, Crabbe T, Bird I, Taylor RJ, Carr MD (2006) NMR assignment of the mTOR domain responsible for rapamycin binding. J Biomol NMR 36(Suppl 1): 3 PubMed

Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105: 14371–14376 PubMed PMC

Wakeman CA, Goodson JR, Zacharia VM, Winkler WC (2014) Assessment of the requirements for magnesium transporters in Bacillus subtilis . J Bacteriol 196: 1206–1214 PubMed PMC

Wang Y, Zhang Y, Ha Y (2006) Crystal structure of a rhomboid family intramembrane protease. Nature 444: 179–180 PubMed

Yang Y, Guo R, Gaffney K, Kim M, Muhammednazaar S, Tian W, Wang B, Liang J, Hong H (2018) Folding‐degradation relationship of a membrane protein mediated by the universally conserved ATP‐dependent protease FtsH. J Am Chem Soc 140: 4656–4665 PubMed PMC

Zeytuni N, Zarivach R (2012) Structural and functional discussion of the tetra‐trico‐peptide repeat, a protein interaction module. Structure 20: 397–405 PubMed

Zoll S, Stanchev S, Began J, Skerle J, Lepsik M, Peclinovska L, Majer P, Strisovsky K (2014) Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate‐peptide complex structures. EMBO J 33: 2408–2421 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...