An in vitro platform for the enzymatic characterization of the rhomboid protease RHBDL4

. 2024 Oct 17 ; () : . [epub] 20241017

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid39415989

Grantová podpora
R21 CA256460 NCI NIH HHS - United States
R35 GM133565 NIGMS NIH HHS - United States

Rhomboid proteases are ubiquitous intramembrane serine proteases that can cleave transmembrane substrates within lipid bilayers. They exhibit many and diverse functions, such as but not limited to, growth factor signaling, immune and inflammatory response, protein quality control, and parasitic invasion. Human rhomboid protease RHBDL4 has been demonstrated to play a critical role in removing misfolded proteins from the Endoplasmic Reticulum and is implicated in severe diseases such as various cancers and Alzheimer's disease. Therefore, RHBDL4 is expected to constitute an important therapeutic target for such devastating diseases. Despite its critical role in many biological processes, the enzymatic properties of RHBDL4 remain largely unknown. To enable a comprehensive characterization of RHBDL4's kinetics, catalytic parameters, substrate specificity, and binding modality we expressed and purified recombinant RHBDL4, and employed it in a Förster Resonance Energy Transfer-based cleavage assay. Until now, kinetic studies have been limited mostly to bacterial rhomboid proteases. Our in vitro platform offers a new method for studying RHBDL4's enzymatic function and substrate preferences. Furthermore, we developed and tested potential inhibitors using our assay and successfully identified peptidyl α-ketoamide inhibitors of RHBDL4 that are highly effective against recombinant RHBDL4. We utilize ensemble docking and molecular dynamics (MD) simulations to explore the binding modality of substrate-derived peptides bound to RHBDL4. Our analysis focused on key interactions and dynamic movements within RHBDL4's active site that contributed to binding stability, offering valuable insights for optimizing the non-prime side of RHBDL4 ketoamide inhibitors. In summary, our study offers fundamental insights into RHBDL4's catalytic activities and substrate preferences, laying the foundation for downstream applications such as drug inhibitor screenings and structure-function studies, which will enable the identification of lead drug compounds for RHBDL4.

Aktualizováno

PubMed

Zobrazit více v PubMed

Adrain C, Cavadas M. The complex life of rhomboid pseudoproteases. PubMed

Amaro RE, Baudry J, Chodera J, Demir Ö, McCammon JA, Miao Y, et al. Ensemble Docking in Drug Discovery. Biophys J. 2018. May 22;114(10):2271–8. PubMed PMC

Arutyunova E, Jiang Z, Yang J, Kulepa AN, Young HS, Verhelst S, et al. An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases. Biol Chem. 2018. Nov 27;399(12):1389–97. PubMed

Arutyunova E, Lysyk L, Morrison M, Brooks C, Joanne Lemieux M. Expression and Purification of Human Mitochondrial Intramembrane Protease PARL. Methods Mol Biol [Internet]. 2021. [cited 2023 Dec 30];2302:1–20. Available from: https://pubmed.ncbi.nlm.nih.gov/33877619/ PubMed

Bach K, Dohnálek J, Škerlová J, Kuzmík J, Poláchová E, Stanchev S, et al. Extensive targeting of chemical space at the prime side of ketoamide inhibitors of rhomboid proteases by branched substituents empowers their selectivity and potency. Eur J Med Chem [Internet]. 2024. Sep 5 [cited 2024 Jul 5];275. Available from: https://pubmed.ncbi.nlm.nih.gov/38901105/ PubMed

Baker RP, Young K, Feng L, Shi Y, Urban S. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc Natl Acad Sci U S A [Internet]. 2007. May 15 [cited 2024 Apr 7];104(20):8257–62. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.0700814104 PubMed DOI PMC

Began J, Cordier B, Březinová J, Delisle J, Hexnerová R, Srb P, et al. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J [Internet]. 2020. Jan 13 [cited 2020 Mar 24];e102935. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31930742 PubMed PMC

Bergbold N, Lemberg MK. Emerging role of rhomboid family proteins in mammalian biology and disease. Vol. 1828, Biochimica et Biophysica Acta - Biomembranes. Elsevier; 2013. p. 2840–8. PubMed

Bhaduri S, Scott NA, Neal SE. The Role of the Rhomboid Superfamily in ER Protein Quality Control : From Mechanisms and Functions to Diseases. 2022; PubMed PMC

Bock J, Kühnle N, Knopf JD, Landscheidt N, Lee JG, Ye Y, et al. Rhomboid protease RHBDL4 promotes retrotranslocation of aggregation-prone proteins for degradation. Cell Rep [Internet]. 2022. Aug 9 [cited 2023 Dec 30];40(6). Available from: https://pubmed.ncbi.nlm.nih.gov/35947953/ PubMed PMC

Bohg C, Öster C, Türkaydin B, Lisurek M, Sanchez-Carranza P, Lange S, et al. The opening dynamics of the lateral gate regulates the activity of rhomboid proteases. Sci Adv [Internet]. 2023. Jul 21 [cited 2024 Apr 7];9(29). Available from: https://www.science.org/doi/10.1126/sciadv.adh3858 PubMed DOI PMC

Cho S, Dickey SW, Urban S. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis. Mol Cell. 2016. Feb 4;61(3):329–40. PubMed PMC

Dickey SW, Baker RP, Cho S, Urban S. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell [Internet]. 2013. Dec 5 [cited 2023 Dec 30];155(6). Available from: https://pubmed.ncbi.nlm.nih.gov/24315097/ PubMed PMC

Düsterhöft S, Künzel U, Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. Biochim Biophys Acta Mol Cell Res [Internet]. 2017;1864(11):2200–9. Available from: 10.1016/j.bbamcr.2017.04.016 PubMed DOI

Fleig L, Bergbold N, Sahasrabudhe P, Geiger B, Kaltak L, Lemberg MK. Ubiquitin-Dependent Intramembrane Rhomboid Protease Promotes ERAD of Membrane Proteins. Mol Cell. 2012a. Aug 24;47(4):558–69. PubMed

Gandhi S, Baker RP, Cho S, Stanchev S, Strisovsky K, Urban S. Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria. Cell Chem Biol. 2020a. Nov 19;27(11):1410–1424.e6. PubMed PMC

Han SI, Nakakuki M, Nakagawa Y, Wang Y, Araki M, Yamamoto Y, et al. Rhomboid protease RHBDL4/RHBDD1 cleaves SREBP-1c at ER monitoring and regulating fatty acids. [cited 2022. Feb 7]; Available from: 10.1101/2021.08.24.457590 PubMed DOI PMC

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature [Internet]. 2021. Jul 15 [cited 2024 Feb 3];596(7873):583–9. Available from: https://www.nature.com/articles/s41586-021-03819-2 PubMed PMC

Kandel RR, Neal SE. The role of rhomboid superfamily members in protein homeostasis: Mechanistic insight and physiological implications. Vol. 1867, Biochimica et Biophysica Acta - Molecular Cell Research. Elsevier B.V.; 2020. p. 118793. PubMed PMC

Knopf JD, Landscheidt N, Pegg CL, Schulz BL, Kühnle N, Chao CW, et al. Intramembrane protease RHBDL4 cleaves oligosaccharyltransferase subunits to target them for ER-associated degradation. J Cell Sci. 2020. Mar 1;133(6). PubMed

Knopf JD, Steigleder SS, Korn F, Kühnle N, Badenes M, Tauber M, et al. RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling. Nat Commun [Internet]. 2024. Dec 1 [cited 2024 Jul 5];15(1). Available from: /pmc/articles/PMC10920636/ PubMed PMC

Kühnle N, Dederer V, Lemberg MK. Intramembrane proteolysis at a glance: from signalling to protein degradation. Vol. 132, Journal of cell science. NLM (Medline); 2019. PubMed

Lemberg MK, Freeman M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 2007. Nov 1;17(11):1634–46. PubMed PMC

Lemberg MK, Menendez J, Misik A, Garcia M, Koth CM, Freeman M. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO Journal [Internet]. 2005a. Feb 9 [cited 2023 Dec 30];24(3):464–72. Available from: https://www.embopress.org/doi/10.1038/sj.emboj.7600537 PubMed DOI PMC

Lim JJ, Lee Y, Ly TT, Kang JY, Lee JG, An JY, et al. Structural Insights into the Interaction of p97 N-terminus Domain and VBM Motif in Rhomboid Protease, RHBDL4. Biochem J [Internet]. 2016b. Jul 12 [cited 2016 Jul 17];BCJ20160237. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27407164 PubMed

Liu XN, Tang ZH, Zhang Y, Pan QC, Chen XH, Yu YS, et al. Lentivirus-mediated silencing of rhomboid domain containing 1 suppresses tumor growth and induces apoptosis in hepatoma HepG2 cells. Asian Pac J Cancer Prev [Internet]. 2013. [cited 2023 Dec 30];14(1):5–9. Available from: https://pubmed.ncbi.nlm.nih.gov/23534782/ PubMed

Lysyk L, Brassard R, Arutyunova E, Siebert V, Jiang Z, Takyi E, et al. Insights into the catalytic properties of the mitochondrial rhomboid protease PARL. Journal of Biological Chemistry. 2021. Jan 1;296. PubMed PMC

Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem [Internet]. 2011. Jun 1 [cited 2023 Dec 30];117(5):856–67. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1471-4159.2011.07253.x PubMed DOI

Miao F, Zhang M, Zhao Y, Li X, Yao R, Wu F, et al. RHBDD1 upregulates EGFR via the AP-1 pathway in colorectal cancer. Oncotarget. 2017;8(15):25251–60. PubMed PMC

Nejatfard A, Wauer N, Bhaduri S, Conn A, Gourkanti S, Singh N, et al. Derlin rhomboid pseudoproteases employ substrate engagement and lipid distortion to enable the retrotranslocation of ERAD membrane substrates. Cell Rep. 2021;37(3):109840. PubMed PMC

Paschkowsky S, Hamzé M, Oestereich F, Munter LM. Alternative processing of the amyloid precursor protein family by rhomboid protease RHBDL4. Journal of Biological Chemistry. 2016. Oct 14;291(42):21903–12. PubMed PMC

Paschkowsky S, Hsiao JM, Young JC, Munter LM. The discovery of proteases and intramembrane proteolysis 1. Biochem Cell Biol [Internet]. 2019. [cited 2023 Dec 30];97(3):265–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30102867/ PubMed

Pierrat OA, Strisovsky K, Christova Y, Large J, Ansell K, Bouloc N, et al. Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases. ACS Chem Biol [Internet]. 2011. Apr 15 [cited 2024 Jul 22];6(4):325–35. Available from: https://pubmed.ncbi.nlm.nih.gov/21175222/ PubMed PMC

Poláchová E, Bach K, Heuten E, Stanchev S, Tichá A, Lampe P, et al. Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy. J Med Chem. 2023. Jan 12;66(1):251–65. PubMed PMC

Saita S, Nolte H, Fiedler KU, Kashkar H, Saskia AV, Zahedi RP, et al. PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat Cell Biol [Internet]. 2017. Mar 13 [cited 2024 Jul 10];19(4):318–28. Available from: https://pubmed.ncbi.nlm.nih.gov/28288130/ PubMed

Sherratt AR, Blais DR, Ghasriani H, Pezacki JP, Goto NK. Activity-based protein profiling of the escherichia coli GlpG rhomboid protein delineates the catalytic core. Biochemistry [Internet]. 2012. Oct 2 [cited 2024 Sep 16];51(39):7794–803. Available from: https://pubs.acs.org/doi/abs/10.1021/bi301087c PubMed DOI

Shokhen M, Albeck A. How does the exosite of rhomboid protease affect substrate processing and inhibition? Protein Science [Internet]. 2017. Dec 1 [cited 2024 Oct 3];26(12):2355–66. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/pro.3294 PubMed DOI PMC

Structural Strisovsky K. and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J [Internet]. 2013. Apr [cited 2024 Oct 12];280(7):1579–603. Available from: https://pubmed.ncbi.nlm.nih.gov/23432912/ PubMed

Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol [Internet]. 2016. Dec 1 [cited 2024 Oct 12];60:52–62. Available from: https://pubmed.ncbi.nlm.nih.gov/27567709/ PubMed

Strisovsky K, Sharpe HJ, Freeman M. Sequence-Specific Intramembrane Proteolysis: Identification of a Recognition Motif in Rhomboid Substrates. Mol Cell. 2009a. Dec 24;36(6):1048–59. PubMed PMC

Tichá A, Collis B, Strisovsky K. The Rhomboid Superfamily: Structural Mechanisms and Chemical Biology Opportunities. Vol. 43, Trends in Biochemical Sciences. Elsevier Ltd; 2018. p. 726–39. PubMed

Tichá A, Stanchev S, Škerle J, Began J, Ingr M, Švehlová K, et al. Sensitive Versatile Fluorogenic Transmembrane Peptide Substrates for Rhomboid Intramembrane Proteases. J Biol Chem [Internet]. 2017a. Feb 17 [cited 2024 Jul 22];292(7):2703–13. Available from: https://pubmed.ncbi.nlm.nih.gov/28069810/ PubMed PMC

Tichá A, Stanchev S, Vinothkumar KR, Mikles DC, Pachl P, Began J, et al. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem Biol [Internet]. 2017b. Dec 21 [cited 2023 Dec 30];24(12):1523–1536.e4. Available from: https://pubmed.ncbi.nlm.nih.gov/29107700/ PubMed PMC

Urban S, Freeman M. Substrate Specificity of Rhomboid Intramembrane Proteases Is Governed by Helix-Breaking Residues in the Substrate Transmembrane Domain physiologically (Bier et al. Mol Cell. 2003;11:1425–34. PubMed

Wei X, Lv T, Chen D, Guan J. Lentiviral vector mediated delivery of RHBDD1 shRNA down regulated the proliferation of human glioblastoma cells. Technol Cancer Res Treat [Internet]. 2014. Feb [cited 2020 Mar 26];13(1):87–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23883433 PubMed

Wolfe MS. Intramembrane proteolysis. Chem Rev [Internet]. 2009. Apr 8 [cited 2023 Dec 30];109(4):1599–612. Available from: https://pubs.acs.org/doi/abs/10.1021/cr8004197 PubMed DOI PMC

Wu Z, Yan N, Feng L, Oberstein A, Yan H, Baker RP, et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nature Structural & Molecular Biology 2006 13:12 [Internet]. 2006. Nov 10 [cited 2024 Apr 7];13(12):1084–91. Available from: https://www.nature.com/articles/nsmb1179 PubMed

Zhang M, Miao F, Huang R, Liu W, Zhao Y, Jiao T, et al. RHBDD1 promotes colorectal cancer metastasis through the Wnt signaling pathway and its downstream target ZEB1. Journal of Experimental and Clinical Cancer Research [Internet]. 2018. Feb 9 [cited 2020 Mar 26];37(1):22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29426364 PubMed PMC

Zoll S, Stanchev S, Began J, Škerle J, Lepšík M, Peclinovská L, et al. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures. EMBO J [Internet]. 2014a. Oct 16 [cited 2024 Sep 1];33(20):2408–21. Available from: https://www.embopress.org/doi/10.15252/embj.201489367 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...