Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy

. 2023 Jan 12 ; 66 (1) : 251-265. [epub] 20221220

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36540942

The mitochondrial rhomboid protease PARL regulates mitophagy by balancing intramembrane proteolysis of PINK1 and PGAM5. It has been implicated in the pathogenesis of Parkinson's disease, but its investigation as a possible therapeutic target is challenging in this context because genetic deficiency of PARL may result in compensatory mechanisms. To address this problem, we undertook a hitherto unavailable chemical biology strategy. We developed potent PARL-targeting ketoamide inhibitors and investigated the effects of acute PARL suppression on the processing status of PINK1 intermediates and on Parkin activation. This approach revealed that PARL inhibition leads to a robust activation of the PINK1/Parkin pathway without major secondary effects on mitochondrial properties, which demonstrates that the pharmacological blockage of PARL to boost PINK1/Parkin-dependent mitophagy is a feasible approach to examine novel therapeutic strategies for Parkinson's disease. More generally, this study showcases the power of ketoamide inhibitors for cell biological studies of rhomboid proteases.

Zobrazit více v PubMed

Dusterhoft S.; Kunzel U.; Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 2200–2209. 10.1016/j.bbamcr.2017.04.016. PubMed DOI

Kuhnle N.; Dederer V.; Lemberg M. K. Intramembrane proteolysis at a glance: from signalling to protein degradation. J. Cell Sci. 2019, 132, jcs21774510.1242/jcs.217745. PubMed DOI

Ticha A.; Collis B.; Strisovsky K. The Rhomboid Superfamily: Structural Mechanisms and Chemical Biology Opportunities. Trends Biochem. Sci. 2018, 43, 726–739. 10.1016/j.tibs.2018.06.009. PubMed DOI

Shi G.; Lee J. R.; Grimes D. A.; Racacho L.; Ye D.; Yang H.; Ross O. A.; Farrer M.; McQuibban G. A.; Bulman D. E. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum. Mol. Genet. 2011, 20, 1966–1974. 10.1093/hmg/ddr077. PubMed DOI

Jin S. M.; Lazarou M.; Wang C.; Kane L. A.; Narendra D. P.; Youle R. J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010, 191, 933–942. 10.1083/jcb.201008084. PubMed DOI PMC

Deas E.; Plun-Favreau H.; Gandhi S.; Desmond H.; Kjaer S.; Loh S. H.; Renton A. E.; Harvey R. J.; Whitworth A. J.; Martins L. M.; Abramov A. Y.; Wood N. W. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 2011, 20, 867–879. 10.1093/hmg/ddq526. PubMed DOI PMC

Meissner C.; Lorenz H.; Weihofen A.; Selkoe D. J.; Lemberg M. K. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011, 117, 856–867. 10.1111/j.1471-4159.2011.07253.x. PubMed DOI

Song W.; Liu W.; Zhao H.; Li S.; Guan X.; Ying J.; Zhang Y.; Miao F.; Zhang M.; Ren X.; Li X.; Wu F.; Zhao Y.; Tian Y.; Wu W.; Fu J.; Liang J.; Wu W.; Liu C.; Yu J.; Zong S.; Miao S.; Zhang X.; Wang L. Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway. Nat. Commun. 2015, 6, 8022.10.1038/ncomms9022. PubMed DOI PMC

Srinivasan P.; Coppens I.; Jacobs-Lorena M. Distinct roles of Plasmodium rhomboid 1 in parasite development and malaria pathogenesis. PLoS Pathog. 2009, 5, e100026210.1371/journal.ppat.1000262. PubMed DOI PMC

Baker R. P.; Wijetilaka R.; Urban S. Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog. 2006, 2, e11310.1371/journal.ppat.0020113. PubMed DOI PMC

Buguliskis J. S.; Brossier F.; Shuman J.; Sibley L. D. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog. 2010, 6, e100085810.1371/journal.ppat.1000858. PubMed DOI PMC

Rugarabamu G.; Marq J. B.; Guerin A.; Lebrun M.; Soldati-Favre D. Distinct contribution of Toxoplasma gondii rhomboid proteases 4 and 5 to micronemal protein protease 1 activity during invasion. Mol. Microbiol. 2015, 97, 244–262. 10.1111/mmi.13021. PubMed DOI

Shen B.; Buguliskis J. S.; Lee T. D.; Sibley L. D. Functional analysis of rhomboid proteases during Toxoplasma invasion. MBio 2014, 5, e01795–e01714. 10.1128/mBio.01795-14. PubMed DOI PMC

Dhingra S.; Kowalski C. H.; Thammahong A.; Beattie S. R.; Bultman K. M.; Cramer R. A.. RbdB, a Rhomboid Protease Critical for SREBP Activation and Virulence in Aspergillus fumigatus. mSphere 2016, 1 (), 10.1128/mSphere.00035-16. PubMed DOI PMC

Vaknin Y.; Hillmann F.; Iannitti R.; Ben Baruch N.; Sandovsky-Losica H.; Shadkchan Y.; Romani L.; Brakhage A.; Kniemeyer O.; Osherov N. Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence. Infect. Immun. 2016, 84, 1866–1878. 10.1128/IAI.00011-16. PubMed DOI PMC

Strisovsky K. Why cells need intramembrane proteases - a mechanistic perspective. FEBS J. 2016, 283, 1837–1845. 10.1111/febs.13638. PubMed DOI

Ticha A.; Stanchev S.; Vinothkumar K. R.; Mikles D. C.; Pachl P.; Began J.; Skerle J.; Svehlova K.; Nguyen M. T. N.; Verhelst S. H. L.; Johnson D. C.; Bachovchin D. A.; Lepsik M.; Majer P.; Strisovsky K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem. Biol. 2017, 24, 1523–1536.e4. 10.1016/j.chembiol.2017.09.007. PubMed DOI PMC

Began J.; Cordier B.; Brezinova J.; Delisle J.; Hexnerova R.; Srb P.; Rampirova P.; Kozisek M.; Baudet M.; Coute Y.; Galinier A.; Veverka V.; Doan T.; Strisovsky K. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J. 2020, 39, e10293510.15252/embj.2019102935. PubMed DOI PMC

Gandhi S.; Baker R. P.; Cho S.; Stanchev S.; Strisovsky K.; Urban S. Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria. Cell. Chem. Biol. 2020, 27, 1410–1424.e6. 10.1016/j.chembiol.2020.08.011. PubMed DOI PMC

Lysyk L.; Brassard R.; Arutyunova E.; Siebert V.; Jiang Z.; Takyi E.; Morrison M.; Young H. S.; Lemberg M. K.; O’Donoghue A. J.; Lemieux M. J. Insights into the catalytic properties of the mitochondrial rhomboid protease PARL. J. Biol. Chem. 2021, 296, 10038310.1016/j.jbc.2021.100383. PubMed DOI PMC

Urban S.; Wolfe M. S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 1883–1888. 10.1073/pnas.0408306102. PubMed DOI PMC

Reading E.; Hall Z.; Martens C.; Haghighi T.; Findlay H.; Ahdash Z.; Politis A.; Booth P. J. Interrogating Membrane Protein Conformational Dynamics within Native Lipid Compositions. Angew. Chem. Int. Ed. Engl. 2017, 56, 15654–15657. 10.1002/anie.201709657. PubMed DOI

Ticha A.; Stanchev S.; Skerle J.; Began J.; Ingr M.; Svehlova K.; Polovinkin L.; Ruzicka M.; Bednarova L.; Hadravova R.; Polachova E.; Rampirova P.; Brezinova J.; Kasicka V.; Majer P.; Strisovsky K. Sensitive Versatile Fluorogenic Transmembrane Peptide Substrates for Rhomboid Intramembrane Proteases. J. Biol. Chem. 2017, 292, 2703–2713. 10.1074/jbc.M116.762849. PubMed DOI PMC

Dickey S. W.; Baker R. P.; Cho S.; Urban S. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 2013, 155, 1270–1281. 10.1016/j.cell.2013.10.053. PubMed DOI PMC

Barniol-Xicota M.; Verhelst S. H. L. Stable and Functional Rhomboid Proteases in Lipid Nanodiscs by Using Diisobutylene/Maleic Acid Copolymers. J. Am. Chem. Soc. 2018, 140, 14557–14561. 10.1021/jacs.8b08441. PubMed DOI

Spinazzi M.; Radaelli E.; Horre K.; Arranz A. M.; Gounko N. V.; Agostinis P.; Maia T. M.; Impens F.; Morais V. A.; Lopez-Lluch G.; Serneels L.; Navas P.; De Strooper B. PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 277–286. 10.1073/pnas.1811938116. PubMed DOI PMC

Saita S.; Tatsuta T.; Lampe P. A.; Konig T.; Ohba Y.; Langer T. PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J. 2018, 37, e9790910.15252/embj.201797909. PubMed DOI PMC

Saita S.; Nolte H.; Fiedler K. U.; Kashkar H.; Venne A. S.; Zahedi R. P.; Kruger M.; Langer T. PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat. Cell Biol. 2017, 19, 318–328. 10.1038/ncb3488. PubMed DOI

Sekine S.; Kanamaru Y.; Koike M.; Nishihara A.; Okada M.; Kinoshita H.; Kamiyama M.; Maruyama J.; Uchiyama Y.; Ishihara N.; Takeda K.; Ichijo H. Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J. Biol. Chem. 2012, 287, 34635–34645. 10.1074/jbc.M112.357509. PubMed DOI PMC

Shi G.; McQuibban G. A. The Mitochondrial Rhomboid Protease PARL Is Regulated by PDK2 to Integrate Mitochondrial Quality Control and Metabolism. Cell Rep. 2017, 18, 1458–1472. 10.1016/j.celrep.2017.01.029. PubMed DOI

Heinitz S.; Klein C.; Djarmati A. The p.S77N presenilin-associated rhomboid-like protein mutation is not a frequent cause of early-onset Parkinson’s disease. Mov. Disord. 2011, 26, 2441–2442. 10.1002/mds.23889. PubMed DOI

Yamano K.; Youle R. J. PINK1 is degraded through the N-end rule pathway. Autophagy 2013, 9, 1758–1769. 10.4161/auto.24633. PubMed DOI PMC

Meissner C.; Lorenz H.; Hehn B.; Lemberg M. K. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 2015, 11, 1484–1498. 10.1080/15548627.2015.1063763. PubMed DOI PMC

Huang S.; Wang X.; Yu J.; Tian Y.; Yang C.; Chen Y.; Chen H.; Ge H. LonP1 regulates mitochondrial network remodeling through the PINK1/Parkin pathway during myoblast differentiation. Am. J. Physiol. Cell Physiol. 2020, 319, C1020–C1028. 10.1152/ajpcell.00589.2019. PubMed DOI

Thomas R. E.; Andrews L. A.; Burman J. L.; Lin W. Y.; Pallanck L. J. PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet. 2014, 10, e100427910.1371/journal.pgen.1004279. PubMed DOI PMC

Wai T.; Saita S.; Nolte H.; Muller S.; Konig T.; Richter-Dennerlein R.; Sprenger H. G.; Madrenas J.; Muhlmeister M.; Brandt U.; Kruger M.; Langer T. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep. 2016, 17, 1844–1856. 10.15252/embr.201642698. PubMed DOI PMC

Bayne A. N.; Trempe J. F. Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell. Mol. Life Sci. 2019, 76, 4589–4611. 10.1007/s00018-019-03203-4. PubMed DOI PMC

Zoll S.; Stanchev S.; Began J.; Skerle J.; Lepsik M.; Peclinovska L.; Majer P.; Strisovsky K. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 2014, 33, 2408–2421. 10.15252/embj.201489367. PubMed DOI PMC

Overduin M.; Esmaili M. Structures and Interactions of Transmembrane Targets in Native Nanodiscs. SLAS Discov. 2019, 24, 943–952. 10.1177/2472555219857691. PubMed DOI

Oluwole A. O.; Danielczak B.; Meister A.; Babalola J. O.; Vargas C.; Keller S. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer. Angew. Chem. Int. Ed. Engl. 2017, 56, 1919–1924. 10.1002/anie.201610778. PubMed DOI PMC

Oluwole A. O.; Klingler J.; Danielczak B.; Babalola J. O.; Vargas C.; Pabst G.; Keller S. Formation of Lipid-Bilayer Nanodiscs by Diisobutylene/Maleic Acid (DIBMA) Copolymer. Langmuir 2017, 33, 14378–14388. 10.1021/acs.langmuir.7b03742. PubMed DOI

Harris N. J.; Booth P. J. Co-Translational Protein Folding in Lipid Membranes. Trends Biochem. Sci. 2019, 44, 729–730. 10.1016/j.tibs.2019.05.002. PubMed DOI

Harris N. J.; Charalambous K.; Findlay H. E.; Booth P. J. Lipids modulate the insertion and folding of the nascent chains of alpha helical membrane proteins. Biochem. Soc. Trans. 2018, 46, 1355–1366. 10.1042/BST20170424. PubMed DOI

Harris N. J.; Reading E.; Ataka K.; Grzegorzewski L.; Charalambous K.; Liu X.; Schlesinger R.; Heberle J.; Booth P. J. Structure formation during translocon-unassisted co-translational membrane protein folding. Sci. Rep. 2017, 7, 8021.10.1038/s41598-017-08522-9. PubMed DOI PMC

Sik A.; Passer B. J.; Koonin E. V.; Pellegrini L. Self-regulated cleavage of the mitochondrial intramembrane-cleaving protease PARL yields Pbeta, a nuclear-targeted peptide. J. Biol. Chem. 2004, 279, 15323–15329. 10.1074/jbc.M313756200. PubMed DOI

Jeyaraju D. V.; Xu L.; Letellier M. C.; Bandaru S.; Zunino R.; Berg E. A.; McBride H. M.; Pellegrini L. Phosphorylation and cleavage of presenilin-associated rhomboid-like protein (PARL) promotes changes in mitochondrial morphology. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 18562–18567. 10.1073/pnas.0604983103. PubMed DOI PMC

Lapek J. D. Jr.; Jiang Z.; Wozniak J. M.; Arutyunova E.; Wang S. C.; Lemieux M. J.; Gonzalez D. J.; O’Donoghue A. J. Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Mol. Cell. Proteomics 2019, 18, 968–981. 10.1074/mcp.TIR118.001099. PubMed DOI PMC

Cho S.; Dickey S. W.; Urban S. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis. Mol. Cell 2016, 61, 329–340. 10.1016/j.molcel.2015.12.022. PubMed DOI PMC

Greene A. W.; Grenier K.; Aguileta M. A.; Muise S.; Farazifard R.; Haque M. E.; McBride H. M.; Park D. S.; Fon E. A. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 2012, 13, 378–385. 10.1038/embor.2012.14. PubMed DOI PMC

Sekine S.; Wang C.; Sideris D. P.; Bunker E.; Zhang Z.; Youle R. J. Reciprocal Roles of Tom7 and OMA1 during Mitochondrial Import and Activation of PINK1. Mol. Cell 2019, 73, 1028–1043.e5. 10.1016/j.molcel.2019.01.002. PubMed DOI

Weihofen A.; Ostaszewski B.; Minami Y.; Selkoe D. J. Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum. Mol. Genet. 2008, 17, 602–616. 10.1093/hmg/ddm334. PubMed DOI

Narendra D. P.; Jin S. M.; Tanaka A.; Suen D. F.; Gautier C. A.; Shen J.; Cookson M. R.; Youle R. J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8, e100029810.1371/journal.pbio.1000298. PubMed DOI PMC

Matsuda N.; Sato S.; Shiba K.; Okatsu K.; Saisho K.; Gautier C. A.; Sou Y. S.; Saiki S.; Kawajiri S.; Sato F.; Kimura M.; Komatsu M.; Hattori N.; Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010, 189, 211–221. 10.1083/jcb.200910140. PubMed DOI PMC

Vives-Bauza C.; Zhou C.; Huang Y.; Cui M.; de Vries R. L.; Kim J.; May J.; Tocilescu M. A.; Liu W.; Ko H. S.; Magrane J.; Moore D. J.; Dawson V. L.; Grailhe R.; Dawson T. M.; Li C.; Tieu K.; Przedborski S. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 378–383. 10.1073/pnas.0911187107. PubMed DOI PMC

Soubannier V.; McLelland G. L.; Zunino R.; Braschi E.; Rippstein P.; Fon E. A.; McBride H. M. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 2012, 22, 135–141. 10.1016/j.cub.2011.11.057. PubMed DOI

McLelland G. L.; Soubannier V.; Chen C. X.; McBride H. M.; Fon E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014, 33, 282–295. 10.1002/embj.201385902. PubMed DOI PMC

Souček M.; Urban J. An Efficient Method for Preparation of Optically Active N-Protected α-Amino Aldehydes from N-Protected α-Amino Alcohols. Collect. Czech. Chem. Commun. 1995, 60, 693–696. 10.1135/cccc19950693. DOI

Coste J.; Frerot E.; Jouin P. Coupling N-Methylated Amino-Acids Using Pybrop and Pyclop Halogenophosphonium Salts - Mechanism and Fields of Application. J. Org. Chem. 1994, 59, 2437–2446. 10.1021/jo00088a027. DOI

Gibson D. G. Enzymatic assembly of overlapping DNA fragments. Methods Enzymol. 2011, 498, 349–361. 10.1016/B978-0-12-385120-8.00015-2. PubMed DOI PMC

Lorenz H.; Hailey D. W.; Wunder C.; Lippincott-Schwartz J. The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat. Protoc. 2006, 1, 276–279. 10.1038/nprot.2006.42. PubMed DOI

Miroux B.; Walker J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 1996, 260, 289–298. 10.1006/jmbi.1996.0399. PubMed DOI

Schwarz D.; Junge F.; Durst F.; Frolich N.; Schneider B.; Reckel S.; Sobhanifar S.; Dotsch V.; Bernhard F. Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat. Protoc. 2007, 2, 2945–2957. 10.1038/nprot.2007.426. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...