Engineering cardiolipin binding to an artificial membrane protein reveals determinants for lipid-mediated stabilization
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
InterCOST programme (project no. LUC23180)
Ministerstvo Školství, Mládeže a Tělovýchovy
2019-02433
Vetenskapsrådet
BB/P01948X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
Consolidator Grant
Svenska Sällskapet för Medicinsk Forskning
2020- 04825
Swedish Research Council
BB/S003339/1
Biotechnology and Biological Sciences Research Council - United Kingdom
Operational Programme CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
10.35802/208361
Wellcome Trust - United Kingdom
2021-05806
Vetenskapsrådet
BB/Y003187/1
Biotechnology and Biological Sciences Research Council - United Kingdom
2019-01961
Vetenskapsrådet
MR/V028839/1
Medical Research Council - United Kingdom
22-2023 Pj
Cancerfonden
MR/S009213/1
Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
PubMed
40304703
PubMed Central
PMC12043315
DOI
10.7554/elife.104237
PII: 104237
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, lipid binding, mass spectrometry, membrane protein, molecular biophysics, structural biology,
- MeSH
- DNA vazebné proteiny MeSH
- endopeptidasy metabolismus chemie genetika MeSH
- Escherichia coli metabolismus genetika MeSH
- kardiolipiny * metabolismus chemie MeSH
- membránové proteiny * metabolismus chemie genetika MeSH
- proteinové inženýrství * MeSH
- proteiny z Escherichia coli * metabolismus chemie genetika MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- endopeptidasy MeSH
- GlpG protein, E coli MeSH Prohlížeč
- kardiolipiny * MeSH
- membránové proteiny * MeSH
- proteiny z Escherichia coli * MeSH
Integral membrane proteins carry out essential functions in the cell, and their activities are often modulated by specific protein-lipid interactions in the membrane. Here, we elucidate the intricate role of cardiolipin (CDL), a regulatory lipid, as a stabilizer of membrane proteins and their complexes. Using the in silico-designed model protein TMHC4_R (ROCKET) as a scaffold, we employ a combination of molecular dynamics simulations and native mass spectrometry to explore the protein features that facilitate preferential lipid interactions and mediate stabilization. We find that the spatial arrangement of positively charged residues as well as local conformational flexibility are factors that distinguish stabilizing from non-stabilizing CDL interactions. However, we also find that even in this controlled, artificial system, a clear-cut distinction between binding and stabilization is difficult to attain, revealing that overlapping lipid contacts can partially compensate for the effects of binding site mutations. Extending our insights to naturally occurring proteins, we identify a stabilizing CDL site within the E. coli rhomboid intramembrane protease GlpG and uncover its regulatory influence on enzyme substrate preference. In this work, we establish a framework for engineering functional lipid interactions, paving the way for the design of proteins with membrane-specific properties or functions.
Department for Cell and Molecular Biology Uppsala University Uppsala Sweden
Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden
Department of Chemistry BMC Uppsala University Uppsala Sweden
Department of Chemistry University of Oxford Oxford United Kingdom
Department of Microbiology Tumor and Cell Biology Karolinska Institutet Solna Sweden
Kavli Institute for Nanoscience Discovery University of Oxford Oxford United Kingdom
School of Life Sciences and Chemistry University of Warwick Coventry United Kingdom
School of Physiology Pharmacology and Neuroscience University of Bristol Bristol United Kingdom
doi: 10.1101/2024.05.27.592301 PubMed
Před aktualizacídoi: 10.7554/eLife.104237.1 PubMed
Před aktualizacídoi: 10.7554/eLife.104237.2 PubMed
Zobrazit více v PubMed
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Abraham M, Alekseenko A, Basov V, Bergh C, Briand E, Brown A, Doijade M, Fiorin G, Fleischmann S, Gorelov S, Gouaillardet G, Grey A, Irrgang ME, Jalalypour F, Jordan J, Kutzner C, Lemkul JA, Merz P, Miletic V, Morozov D, Nabet J, Pall S, Pasquadibisceglie A, Pellegrino M, Santuz H, Schulz R, Shugaeva T, Shvetsov A, Villa A, Wingbermuehle S, Hess B, Lindahl E. GROMACS 2024-beta manual. 1.0Zenodo. 2023 doi: 10.5281/zenodo.3957257. DOI
Akdel M, Pires DEV, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, Bryant P, Good LL, Laskowski RA, Pozzati G, Shenoy A, Zhu W, Kundrotas P, Serra VR, Rodrigues CHM, Dunham AS, Burke D, Borkakoti N, Velankar S, Frost A, Basquin J, Lindorff-Larsen K, Bateman A, Kajava AV, Valencia A, Ovchinnikov S, Durairaj J, Ascher DB, Thornton JM, Davey NE, Stein A, Elofsson A, Croll TI, Beltrao P. A structural biology community assessment of AlphaFold2 applications. Nature Structural & Molecular Biology. 2022;29:1056–1067. doi: 10.1038/s41594-022-00849-w. PubMed DOI PMC
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD., Jr Optimization of the additive CHARMM All-Atom protein force field targeting improved sampling of the backbone ϕ, ψ and Side-Chain χ 1 and χ 2 Dihedral Angles. Journal of Chemical Theory and Computation. 2012;8:3257–3273. doi: 10.1021/ct300400x. PubMed DOI PMC
Bolla JR, Corey RA, Sahin C, Gault J, Hummer A, Hopper JTS, Lane DP, Drew D, Allison TM, Stansfeld PJ, Robinson CV, Landreh M. A mass‐spectrometry‐based approach to distinguish annular and specific lipid binding to membrane proteins. Angewandte Chemie. 2020;132:3551–3556. doi: 10.1002/ange.201914411. PubMed DOI PMC
Bozelli JC, Aulakh SS, Epand RM. Membrane shape as determinant of protein properties. Biophysical Chemistry. 2021;273:106587. doi: 10.1016/j.bpc.2021.106587. PubMed DOI
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Corey RA, Song W, Duncan AL, Ansell TB, Sansom MSP, Stansfeld PJ. Identification and assessment of cardiolipin interactions with E. coli inner membrane proteins. Science Advances. 2021;7:eabh2217. doi: 10.1126/sciadv.abh2217. PubMed DOI PMC
Corey RA, Harrison N, Stansfeld PJ, Sansom MSP, Duncan AL. Cardiolipin, and not monolysocardiolipin, preferentially binds to the interface of complexes III and IV. Chemical Science. 2022;13:13489–13498. doi: 10.1039/d2sc04072g. PubMed DOI PMC
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SYu, Marrink SJ, Tieleman DP. Emerging diversity in lipid-protein interactions. Chemical Reviews. 2019;119:5775–5848. doi: 10.1021/acs.chemrev.8b00451. PubMed DOI PMC
Cournia Z, Chatzigoulas A. Allostery in membrane proteins. Current Opinion in Structural Biology. 2020;62:197–204. doi: 10.1016/j.sbi.2020.03.006. PubMed DOI
Feroz H, Kwon H, Peng J, Oh H, Ferlez B, Baker CS, Golbeck JH, Bazan GC, Zydney AL, Kumar M. Improving extraction and post-purification concentration of membrane proteins. The Analyst. 2018;143:1378–1386. doi: 10.1039/c7an01470h. PubMed DOI
Gowers R, Linke M, Barnoud J, Reddy T, Melo M, Seyler S, Domański J, Dotson D, Buchoux S, Kenney I, Beckstein O. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. SciPy Proceedings; 2016. DOI
Gupta K, Donlan JAC, Hopper JTS, Uzdavinys P, Landreh M, Struwe WB, Drew D, Baldwin AJ, Stansfeld PJ, Robinson CV. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017;541:421–424. doi: 10.1038/nature20820. PubMed DOI PMC
Hernández H, Robinson CV. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature Protocols. 2007;2:715–726. doi: 10.1038/nprot.2007.73. PubMed DOI
Hess B, Bekker H, Berendsen HJC, Fraaije J. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. Journal of Computational Chemistry. 2013;34:2135–2145. doi: 10.1002/jcc.23354. PubMed DOI PMC
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Hunte C. Specific protein-lipid interactions in membrane proteins. Biochemical Society Transactions. 2005;33:938–942. doi: 10.1042/BST20050938. PubMed DOI
Hyung SJ, Robinson CV, Ruotolo BT. Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes. Chemistry & Biology. 2009;16:382–390. doi: 10.1016/j.chembiol.2009.02.008. PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI
Kimanius D, Dong L, Sharov G, Nakane T, Scheres SHW. New tools for automated cryo-EM single-particle analysis in RELION-4.0. The Biochemical Journal. 2021;478:4169–4185. doi: 10.1042/BCJ20210708. PubMed DOI PMC
Konermann L. Molecular dynamics simulations on gas-phase proteins with mobile protons: inclusion of all-atom charge solvation. The Journal of Physical Chemistry. B. 2017;121:8102–8112. doi: 10.1021/acs.jpcb.7b05703. PubMed DOI
Kroon PC, Grunewald F, Barnoud J, van Tilburg M, Souza PCT, Wassenaar TA, Marrink SJ. Martinize2 and vermouth: unified framework for topology generation. eLife. 2023;12:90627. doi: 10.7554/eLife.90627.1. DOI
Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV. Membrane proteins bind lipids selectively to modulate their structure and function. Nature. 2014;510:172–175. doi: 10.1038/nature13419. PubMed DOI PMC
Landreh M, Marty MT, Gault J, Robinson CV. A sliding selectivity scale for lipid binding to membrane proteins. Current Opinion in Structural Biology. 2016;39:54–60. doi: 10.1016/j.sbi.2016.04.005. PubMed DOI PMC
Landreh M, Marklund EG, Uzdavinys P, Degiacomi MT, Coincon M, Gault J, Gupta K, Liko I, Benesch JLP, Drew D, Robinson CV. Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters. Nature Communications. 2017;8:13993. doi: 10.1038/ncomms13993. PubMed DOI PMC
Larsson P, Kneiszl RC, Marklund EG. MkVsites: A tool for creating GROMACS virtual sites parameters to increase performance in all-atom molecular dynamics simulations. Journal of Computational Chemistry. 2020;41:1564–1569. doi: 10.1002/jcc.26198. PubMed DOI PMC
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nature Reviews. Molecular Cell Biology. 2023;24:107–122. doi: 10.1038/s41580-022-00524-4. PubMed DOI PMC
Lu P, Min D, DiMaio F, Wei KY, Vahey MD, Boyken SE, Chen Z, Fallas JA, Ueda G, Sheffler W, Mulligan VK, Xu W, Bowie JU, Baker D. Accurate computational design of multipass transmembrane proteins. Science. 2018;359:1042–1046. doi: 10.1126/science.aaq1739. PubMed DOI PMC
McBride JM, Polev K, Abdirasulov A, Reinharz V, Grzybowski BA, Tlusty T. AlphaFold2 can predict single-mutation effects. Physical Review Letters. 2023;131:218401. doi: 10.1103/PhysRevLett.131.218401. PubMed DOI
Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC
Musatov A, Sedlák E. Role of cardiolipin in stability of integral membrane proteins. Biochimie. 2017;142:102–111. doi: 10.1016/j.biochi.2017.08.013. PubMed DOI
Nji E, Chatzikyriakidou Y, Landreh M, Drew D. An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins. Nature Communications. 2018;9:4253. doi: 10.1038/s41467-018-06702-3. PubMed DOI PMC
Páll S, Hess B. A flexible algorithm for calculating pair interactions on SIMD architectures. Computer Physics Communications. 2013;184:2641–2650. doi: 10.1016/j.cpc.2013.06.003. DOI
Palsdottir H, Hunte C. Lipids in membrane protein structures. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2004;1666:2–18. doi: 10.1016/j.bbamem.2004.06.012. PubMed DOI
Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schägger H. Cardiolipin stabilizes respiratory chain supercomplexes. The Journal of Biological Chemistry. 2003;278:52873–52880. doi: 10.1074/jbc.M308366200. PubMed DOI
Poláchová E, Bach K, Heuten E, Stanchev S, Tichá A, Lampe P, Majer P, Langer T, Lemberg MK, Stříšovský K. Chemical blockage of the mitochondrial rhomboid protease parl by novel ketoamide inhibitors reveals its role in PINK1/Parkin-dependent mitophagy. Journal of Medicinal Chemistry. 2023;66:251–265. doi: 10.1021/acs.jmedchem.2c01092. PubMed DOI PMC
Pyle E, Kalli AC, Amillis S, Hall Z, Lau AM, Hanyaloglu AC, Diallinas G, Byrne B, Politis A. Structural lipids enable the formation of functional oligomers of the eukaryotic purine symporter UapA. Cell Chemical Biology. 2018;25:840–848. doi: 10.1016/j.chembiol.2018.03.011. PubMed DOI PMC
Renard K, Byrne B. Insights into the role of membrane lipids in the structure, function and regulation of integral membrane proteins. International Journal of Molecular Sciences. 2021;22:9026. doi: 10.3390/ijms22169026. PubMed DOI PMC
Rimon A, Mondal R, Friedler A, Padan E. Cardiolipin is an optimal phospholipid for the assembly, stability, and proper functionality of the dimeric form of NhaA Na+/H+ Antiporter. Scientific Reports. 2019;9:17662. doi: 10.1038/s41598-019-54198-8. PubMed DOI PMC
Rohou A, Grigorieff N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. Journal of Structural Biology. 2015;192:216–221. doi: 10.1016/j.jsb.2015.08.008. PubMed DOI PMC
Schrecke S, Zhu Y, McCabe JW, Bartz M, Packianathan C, Zhao M, Zhou M, Russell D, Laganowsky A. Selective regulation of human TRAAK channels by biologically active phospholipids. Nature Chemical Biology. 2021;17:89–95. doi: 10.1038/s41589-020-00659-5. PubMed DOI PMC
Schrödinger LLC. PYMOL; 2015. https://pymol.org/
Senoo N, Chinthapalli DK, Baile MG, Golla VK, Saha B, Oluwole AO, Ogunbona OB, Saba JA, Munteanu T, Valdez Y, Whited K, Sheridan MS, Chorev D, Alder NN, May ER, Robinson CV, Claypool SM. Functional diversity among cardiolipin binding sites on the mitochondrial ADP/ATP carrier. The EMBO Journal. 2024;43:2979–3008. doi: 10.1038/s44318-024-00132-2. PubMed DOI PMC
Song W, Corey RA, Ansell TB, Cassidy CK, Horrell MR, Duncan AL, Stansfeld PJ, Sansom MSP. PyLipID: a python package for analysis of protein-lipid interactions from molecular dynamics simulations. Journal of Chemical Theory and Computation. 2022;18:1188–1201. doi: 10.1021/acs.jctc.1c00708. PubMed DOI PMC
Souza PCT, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F, Patmanidis I, Abdizadeh H, Bruininks BMH, Wassenaar TA, Kroon PC, Melcr J, Nieto V, Corradi V, Khan HM, Domański J, Javanainen M, Martinez-Seara H, Reuter N, Best RB, Vattulainen I, Monticelli L, Periole X, Tieleman DP, de Vries AH, Marrink SJ. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods. 2021;18:382–388. doi: 10.1038/s41592-021-01098-3. PubMed DOI
Tichá A, Stanchev S, Škerle J, Began J, Ingr M, Švehlová K, Polovinkin L, Růžička M, Bednárová L, Hadravová R, Poláchová E, Rampírová P, Březinová J, Kašička V, Majer P, Strisovsky K. Sensitive versatile fluorogenic transmembrane peptide substrates for rhomboid intramembrane proteases. The Journal of Biological Chemistry. 2017;292:2703–2713. doi: 10.1074/jbc.M116.762849. PubMed DOI PMC
Urban S, Wolfe MS. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. PNAS. 2005;102:1883–1888. doi: 10.1073/pnas.0408306102. PubMed DOI PMC
Vickery ON, Stansfeld PJ. CG2AT2: an enhanced fragment-based approach for serial multi-scale molecular dynamics simulations. Journal of Chemical Theory and Computation. 2021;17:6472–6482. doi: 10.1021/acs.jctc.1c00295. PubMed DOI PMC
Vinothkumar KR. Structure of rhomboid protease in a lipid environment. Journal of Molecular Biology. 2011;407:232–247. doi: 10.1016/j.jmb.2011.01.029. PubMed DOI PMC
Wang Y, Ha Y. Open-cap conformation of intramembrane protease GlpG. PNAS. 2007;104:2098–2102. doi: 10.1073/pnas.0611080104. PubMed DOI PMC
Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ. Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. Journal of Chemical Theory and Computation. 2015;11:2144–2155. doi: 10.1021/acs.jctc.5b00209. PubMed DOI
Weikum J, van Dyck JF, Subramani S, Klebl DP, Storflor M, Muench SP, Abel S, Sobott F, Morth JP. The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2024;1871:119614. doi: 10.1016/j.bbamcr.2023.119614. PubMed DOI
Yen HY, Abramsson ML, Agasid MT, Lama D, Gault J, Liko I, Kaldmäe M, Saluri M, Qureshi AA, Suades A, Drew D, Degiacomi MT, Marklund EG, Allison TM, Robinson CV, Landreh M. Electrospray ionization of native membrane proteins proceeds via a charge equilibration step. RSC Advances. 2022;12:9671–9680. doi: 10.1039/d2ra01282k. PubMed DOI PMC
Zivanov J, Nakane T, Scheres SHW. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ. 2019;6:5–17. doi: 10.1107/S205225251801463X. PubMed DOI PMC