4-Oxo-β-lactams as Covalent Inhibitors of the Mitochondrial Intramembrane Protease PARL

. 2024 Dec 12 ; 15 (12) : 2101-2106. [epub] 20241114

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39691509

Rhomboid proteases play a variety of physiological roles, but rhomboid protease inhibitors have been mostly developed for the E. coli model rhomboid GlpG. In this work, we screened different electrophilic scaffolds against the human mitochondrial rhomboid PARL and found 4-oxo-β-lactams as submicromolar inhibitors. Multifaceted computations suggest explanations for the activity at the molecular scale and provide models of covalently bound complexes. Together with the straightforward synthesis of the 4-oxo-β-lactam scaffold, this may pave the way toward selective, nonpeptidic PARL inhibitors.

Zobrazit více v PubMed

Lee J. R.; Urban S.; Garvey C. F.; Freeman M. Regulated Intracellular Ligand Transport and Proteolysis Control EGF Signal Activation in Drosophila. Cell 2001, 107 (2), 161–171. 10.1016/S0092-8674(01)00526-8. PubMed DOI

Urban S.; Lee J. R.; Freeman M. Drosophila Rhomboid-1 Defines a Family of Putative Intramembrane Serine Proteases. Cell 2001, 107 (2), 173–182. 10.1016/S0092-8674(01)00525-6. PubMed DOI

Koonin E. V.; Makarova K. S.; Rogozin I. B.; Davidovic L.; Letellier M. C.; Pellegrini L. The Rhomboids: A Nearly Ubiquitous Family of Intramembrane Serine Proteases That Probably Evolved by Multiple Ancient Horizontal Gene Transfers. Genome Biol. 2003, 4 (3), R19.10.1186/gb-2003-4-3-r19. PubMed DOI PMC

Lemberg M. K.; Freeman M. Functional and Evolutionary Implications of Enhanced Genomic Analysis of Rhomboid Intramembrane Proteases. Genome Res. 2007, 17 (11), 1634–1646. 10.1101/gr.6425307. PubMed DOI PMC

Began J.; Cordier B.; Březinová J.; Delisle J.; Hexnerová R.; Srb P.; Rampírová P.; Kožíšek M.; Baudet M.; Couté Y.; Galinier A.; Veverka V.; Doan T.; Strisovsky K. Rhomboid Intramembrane Protease YqgP Licenses Bacterial Membrane Protein Quality Control as Adaptor of FtsH AAA Protease. EMBO J. 2020, 39 (10), 102935.10.15252/embj.2019102935. PubMed DOI PMC

Grieve A. G.; Yeh Y. C.; Chang Y. F.; Huang H. Y.; Zarcone L.; Breuning J.; Johnson N.; Stříšovský K.; Brown M. H.; Parekh A. B.; Freeman M. Conformational Surveillance of Orai1 by a Rhomboid Intramembrane Protease Prevents Inappropriate CRAC Channel Activation. Mol. Cell 2021, 81 (23), 4784–4798. 10.1016/j.molcel.2021.10.025. PubMed DOI PMC

Stevenson L. G.; Strisovsky K.; Clemmer K. M.; Bhatt S.; Freeman M.; Rather P. N. Rhomboid Protease AarA Mediates Quorum-Sensing in Providencia Stuartii by Activating TatA of the Twin-Arginine Translocase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (3), 1003–1008. 10.1073/pnas.0608140104. PubMed DOI PMC

Fleig L.; Bergbold N.; Sahasrabudhe P.; Geiger B.; Kaltak L.; Lemberg M. K. Ubiquitin-Dependent Intramembrane Rhomboid Protease Promotes ERAD of Membrane Proteins. Mol. Cell 2012, 47 (4), 558–569. 10.1016/j.molcel.2012.06.008. PubMed DOI

Bock J.; Kühnle N.; Knopf J. D.; Landscheidt N.; Lee J. G.; Ye Y.; Lemberg M. K. Rhomboid Protease RHBDL4 Promotes Retrotranslocation of Aggregation-Prone Proteins for Degradation. Cell Rep. 2022, 40 (6), 111175.10.1016/j.celrep.2022.111175. PubMed DOI PMC

Urban S.; Lee J. R.; Freeman M. A Family of Rhomboid Intramembrane Proteases Activates All Drosophila Membrane-Tethered EGF Ligands. EMBO J. 2002, 21 (16), 4277–4286. 10.1093/emboj/cdf434. PubMed DOI PMC

Adrain C.; Strisovsky K.; Zettl M.; Hu L.; Lemberg M. K.; Freeman M. Mammalian EGF Receptor Activation by the Rhomboid Protease RHBDL2. EMBO Rep. 2011, 12 (5), 421–427. 10.1038/embor.2011.50. PubMed DOI PMC

Shi G.; Lee J. R.; Grimes D. A.; Racacho L.; Ye D.; Yang H.; Ross O. A.; Farrer M.; McQuibban G. A.; Bulman D. E. Functional Alteration of PARL Contributes to Mitochondrial Dysregulation in Parkinson’s Disease. Hum. Mol. Genet. 2011, 20 (10), 1966–1974. 10.1093/hmg/ddr077. PubMed DOI

Song W.; Liu W.; Zhao H.; Li S.; Guan X.; Ying J.; Zhang Y.; Miao F.; Zhang M.; Ren X.; Li X.; Wu F.; Zhao Y.; Tian Y.; Wu W.; Fu J.; Liang J.; Wu W.; Liu C.; Yu J.; Zong S.; Miao S.; Zhang X.; Wang L. Rhomboid Domain Containing 1 Promotes Colorectal Cancer Growth through Activation of the EGFR Signalling Pathway. Nat. Commun. 2015, 6, 8022.10.1038/ncomms9022. PubMed DOI PMC

Gandhi S.; Baker R. P.; Cho S.; Stanchev S.; Strisovsky K.; Urban S. Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria. Cell Chem. Biol. 2020, 27 (11), 1410–1424. 10.1016/j.chembiol.2020.08.011. PubMed DOI PMC

Jin S. M.; Lazarou M.; Wang C.; Kane L. A.; Narendra D. P.; Youle R. J. Mitochondrial Membrane Potential Regulates PINK1 Import and Proteolytic Destabilization by PARL. J. Cell Biol. 2010, 191 (5), 933–942. 10.1083/jcb.201008084. PubMed DOI PMC

Meissner C.; Lorenz H.; Weihofen A.; Selkoe D. J.; Lemberg M. K. The Mitochondrial Intramembrane Protease PARL Cleaves Human Pink1 to Regulate Pink1 Trafficking. J. Neurochem. 2011, 117 (5), 856–867. 10.1111/j.1471-4159.2011.07253.x. PubMed DOI

Saita S.; Nolte H.; Fiedler K. U.; Kashkar H.; Venne A. S.; Zahedi R. P.; Kruger M.; Langer T. PARL Mediates Smac Proteolytic Maturation in Mitochondria to Promote Apoptosis. Nat. Cell Biol. 2017, 19 (4), 318–328. 10.1038/ncb3488. PubMed DOI

Saita S.; Tatsuta T.; Lampe P. A.; König T.; Ohba Y.; Langer T. PARL Partitions the Lipid Transfer Protein STARD7 between the Cytosol and Mitochondria. EMBO J. 2018, 37 (4), 97909.10.15252/embj.201797909. PubMed DOI PMC

Spinazzi M.; Radaelli E.; Horré K.; Arranz A. M.; Gounko N. V.; Agostinis P.; Maia T. M.; Impens F.; Morais V. A.; Lopez-Lluch G.; Serneels L.; Navas P.; De Strooper B. PARL Deficiency in Mouse Causes Complex III Defects, Coenzyme Q Depletion, and Leigh-like Syndrome. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (1), 277–286. 10.1073/pnas.1811938116. PubMed DOI PMC

Deshwal S.; Onishi M.; Tatsuta T.; Bartsch T.; Cors E.; Ried K.; Lemke K.; Nolte H.; Giavalisco P.; Langer T. Mitochondria Regulate Intracellular Coenzyme Q Transport and Ferroptotic Resistance via STARD7. Nat. Cell Biol. 2023, 25 (2), 246–257. 10.1038/s41556-022-01071-y. PubMed DOI PMC

Radaelli E.; Assenmacher C. A.; Verrelle J.; Banerjee E.; Manero F.; Khiati S.; Girona A.; Lopez-Lluch G.; Navas P.; Spinazzi M. Mitochondrial Defects Caused by PARL Deficiency Lead to Arrested Spermatogenesis and Ferroptosis. Elife 2023, 12, e84710.10.7554/eLife.84710. PubMed DOI PMC

Bach K.; Dohnálek J.; Škerlová J.; Kuzmík J.; Poláchová E.; Stanchev S.; Majer P.; Fanfrlík J.; Pecina A.; Řezáč J.; Lepšík M.; Borshchevskiy V.; Polovinkin V.; Strisovsky K. Extensive Targeting of Chemical Space at the Prime Side of Ketoamide Inhibitors of Rhomboid Proteases by Branched Substituents Empowers Their Selectivity and Potency. Eur. J. Med. Chem. 2024, 275, 116606.10.1016/j.ejmech.2024.116606. PubMed DOI

Wolf E. V.; Verhelst S. H. L. Inhibitors of Rhomboid Proteases. Biochimie 2016, 122, 38–47. 10.1016/j.biochi.2015.07.007. PubMed DOI

Strisovsky K. Rhomboid Protease Inhibitors: Emerging Tools and Future Therapeutics. Semin. Cell Dev. Biol. 2016, 60, 52–62. 10.1016/j.semcdb.2016.08.021. PubMed DOI

Zoll S.; Stanchev S.; Began J.; Skerle J.; Lepsik M.; Peclinovska L.; Majer P.; Strisovsky K. Substrate Binding and Specificity of Rhomboid Intramembrane Protease Revealed by Substrate-Peptide Complex Structures. EMBO J. 2014, 33 (20), 2408–2421. 10.15252/embj.201489367. PubMed DOI PMC

Cho S.; Dickey S. W.; Urban S. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis. Mol. Cell 2016, 61 (3), 329–340. 10.1016/j.molcel.2015.12.022. PubMed DOI PMC

Tichá A.; Stanchev S.; Vinothkumar K. R.; Mikles D. C.; Pachl P.; Began J.; Škerle J.; Švehlová K.; Nguyen M. T.; Verhelst S. H.; Johnson D. C.; Bachovchin D. A.; Lepšík M.; Majer P.; Strisovsky K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem. Biol. 2017, 24 (12), 1523–1536. 10.1016/j.chembiol.2017.09.007. PubMed DOI PMC

Poláchová E.; Bach K.; Heuten E.; Stanchev S.; Tichá A.; Lampe P.; Majer P.; Langer T.; Lemberg M. K.; Stříšovský K. Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy. J. Med. Chem. 2023, 66 (1), 251.10.1021/acs.jmedchem.2c01092. PubMed DOI PMC

Vinothkumar K. R.; Strisovsky K.; Andreeva A.; Christova Y.; Verhelst S.; Freeman M. The Structural Basis for Catalysis and Substrate Specificity of a Rhomboid Protease. EMBO J. 2010, 29 (22), 3797–3809. 10.1038/emboj.2010.243. PubMed DOI PMC

Vosyka O.; Vinothkumar K. R.; Wolf E. V.; Brouwer A. J.; Liskamp R. M.; Verhelst S. H. L. Activity-Based Probes for Rhomboid Proteases Discovered in a Mass Spectrometry-Based Assay. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (7), 2472–2477. 10.1073/pnas.1215076110. PubMed DOI PMC

Yang J.; Barniol-Xicota M.; Nguyen M. T. N.; Ticha A.; Strisovsky K.; Verhelst S. H. L. Benzoxazin-4-Ones as Novel, Easily Accessible Inhibitors for Rhomboid Proteases. Bioorg. Med. Chem. Lett. 2018, 28 (8), 1423–1427. 10.1016/j.bmcl.2017.12.056. PubMed DOI

Goel P.; Jumpertz T.; Tichá A.; Ogorek I.; Mikles D. C.; Hubalek M.; Pietrzik C. U.; Strisovsky K.; Schmidt B.; Weggen S. Discovery and Validation of 2-Styryl Substituted Benzoxazin-4-Ones as a Novel Scaffold for Rhomboid Protease Inhibitors. Bioorg. Med. Chem. Lett. 2018, 28 (8), 1417–1422. 10.1016/j.bmcl.2018.02.017. PubMed DOI

Goel P.; Jumpertz T.; Mikles D. C.; Tichá A.; Nguyen M. T. N.; Verhelst S.; Hubalek M.; Johnson D. C.; Bachovchin D. A.; Ogorek I.; Pietrzik C. U.; Strisovsky K.; Schmidt B.; Weggen S. Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases. Biochemistry 2017, 56 (51), 6713–6725. 10.1021/acs.biochem.7b01066. PubMed DOI PMC

Wolf E. V.; Zeissler A.; Vosyka O.; Zeiler E.; Sieber S.; Verhelst S. H. L. A New Class of Rhomboid Protease Inhibitors Discovered by Activity-Based Fluorescence Polarization. PLoS One 2013, 8 (8), e7230710.1371/journal.pone.0072307. PubMed DOI PMC

Pierrat O. A.; Strisovsky K.; Christova Y.; Large J.; Ansell K.; Bouloc N.; Smiljanic E.; Freeman M. Monocyclic Beta-Lactams Are Selective, Mechanism-Based Inhibitors of Rhomboid Intramembrane Proteases. ACS Chem. Biol. 2011, 6 (4), 325–335. 10.1021/cb100314y. PubMed DOI PMC

Vinothkumar K. R.; Pierrat O. A.; Large J. M.; Freeman M. Structure of Rhomboid Protease in Complex with Beta-Lactam Inhibitors Defines the S2’ Cavity. Structure 2013, 21 (6), 1051–1058. 10.1016/j.str.2013.03.013. PubMed DOI PMC

Yang J.; Carvalho L. A. R.; Ji S.; Chen S.; Moreira R.; Verhelst S. H. L. 4-Oxo-β-Lactams as Novel Inhibitors for Rhomboid Proteases. ChemBioChem 2023, 24 (21), 418.10.1002/cbic.202300418. PubMed DOI

Parsons W. H.; Rutland N. T.; Crainic J. A.; Cardozo J. M.; Chow A. S.; Andrews C. L.; Sheehan B. K. Development of Succinimide-Based Inhibitors for the Mitochondrial Rhomboid Protease PARL. Bioorg. Med. Chem. Lett. 2021, 49, 128290.10.1016/j.bmcl.2021.128290. PubMed DOI

Lysyk L.; Brassard R.; Arutyunova E.; Siebert V.; Jiang Z.; Takyi E.; Morrison M.; Young H. S.; Lemberg M. K.; O’Donoghue A. J.; Lemieux M. J. Insights into the Catalytic Properties of the Mitochondrial Rhomboid Protease PARL. J. Biol. Chem. 2021, 296, 100383.10.1016/j.jbc.2021.100383. PubMed DOI PMC

Carvalho L. A. R.; Ross B.; Fehr L.; Bolgi O.; Wöhrle S.; Lum K. M.; Podlesainski D.; Vieira A. C.; Kiefersauer R.; Félix R.; Rodrigues T.; Lucas S. D.; Groß O.; Geiss-Friedlander R.; Cravatt B. F.; Huber R.; Kaiser M.; Moreira R. Chemoproteomics-Enabled Identification of 4-Oxo-β-Lactams as Inhibitors of Dipeptidyl Peptidases 8 and 9. Angew. Chem., Int. Ed. 2022, 61 (47), e20221049810.1002/anie.202210498. PubMed DOI PMC

Deas E.; Plun-Favreau H.; Gandhi S.; Desmond H.; Kjaer S.; Loh S. H.; Renton A. E.; Harvey R. J.; Whitworth A. J.; Martins L. M.; Abramov A. Y.; Wood N. W. PINK1 Cleavage at Position A103 by the Mitochondrial Protease PARL. Hum. Mol. Genet. 2011, 20 (5), 867–879. 10.1093/hmg/ddq526. PubMed DOI PMC

Mulchande J.; Guedes R. C.; Tsang W. Y.; Page M. I.; Moreira R.; Iley J. Azetidine-2,4-Diones (4-Oxo-β-Lactams) as Scaffolds for Designing Elastase Inhibitors. J. Med. Chem. 2008, 51 (6), 1783–1790. 10.1021/jm701257h. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace