An in vitro platform for the enzymatic characterization of the rhomboid protease RHBDL4

. 2025 Mar ; 301 (3) : 108275. [epub] 20250207

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39922490

Grantová podpora
K12 GM068524 NIGMS NIH HHS - United States
R21 CA256460 NCI NIH HHS - United States
R35 GM133565 NIGMS NIH HHS - United States

Odkazy

PubMed 39922490
PubMed Central PMC11929074
DOI 10.1016/j.jbc.2025.108275
PII: S0021-9258(25)00123-1
Knihovny.cz E-zdroje

Rhomboid proteases are ubiquitous intramembrane serine proteases that can cleave transmembrane substrates within lipid bilayers. They exhibit many and diverse functions, such as but not limited to, growth factor signaling, immune and inflammatory response, protein quality control, and parasitic invasion. Human rhomboid protease RHBDL4 has been demonstrated to play a critical role in removing misfolded proteins from the endoplasmic reticulum and is implicated in severe diseases such as various cancers and Alzheimer's disease. Therefore, RHBDL4 is expected to constitute an important therapeutic target for such devastating diseases. Despite its critical role in many biological processes, the enzymatic properties of RHBDL4 remain largely unknown. To enable a comprehensive characterization of RHBDL4's kinetics, catalytic parameters, substrate specificity, and binding modality, we expressed and purified recombinant RHBDL4 and employed it in a Förster resonance energy transfer-based cleavage assay. Until now, kinetic studies have been limited mostly to bacterial rhomboid proteases. Our in vitro platform offers a new method for studying RHBDL4's enzymatic function and substrate preferences. Furthermore, we developed and tested potential inhibitors using our assay and successfully identified peptidyl α-ketoamide inhibitors of RHBDL4 that are highly effective against recombinant RHBDL4. We utilize ensemble docking and molecular dynamics simulations to explore the binding modality of substrate-derived peptides bound to RHBDL4. Our analysis focused on key interactions and dynamic movements within RHBDL4's active site that contributed to binding stability, offering valuable insights for optimizing the nonprime side of RHBDL4 ketoamide inhibitors. In summary, our study offers fundamental insights into RHBDL4's catalytic activities and substrate preferences, laying the foundation for downstream applications such as drug inhibitor screenings and structure-function studies, which will enable the identification of lead drug compounds for RHBDL4.

Před aktualizací

PubMed

Zobrazit více v PubMed

Kandel R.R., Neal S.E. The role of rhomboid superfamily members in protein homeostasis: mechanistic insight and physiological implications. Biochim. Biophys. Acta Mol. Cell Res. 2020;1867 PubMed PMC

Kühnle N., Dederer V., Lemberg M.K. Intramembrane proteolysis at a glance: from signalling to protein degradation. J. Cell Sci. 2019;132 PubMed

Paschkowsky S., Hsiao J.M., Young J.C., Munter L.M. The discovery of proteases and intramembrane proteolysis 1. Biochem. Cell Biol. 2019;97:265–269. PubMed

Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J. 2013;280:1579–1603. PubMed

Wolfe M.S. Intramembrane proteolysis. Chem. Rev. 2009;109:1599–1612. PubMed PMC

Düsterhöft S., Künzel U., Freeman M. Rhomboid proteases in human disease: mechanisms and future prospects. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:2200–2209. PubMed

Bergbold N., Lemberg M.K. Emerging role of rhomboid family proteins in mammalian biology and disease. Biochim. Biophys. Acta Biomembr. 2013;1828:2840–2848. PubMed

Lemberg M.K., Freeman M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 2007;17:1634–1646. PubMed PMC

Tichá A., Collis B., Strisovsky K. The rhomboid superfamily: structural mechanisms and chemical biology opportunities. Trends Biochem. Sci. 2018;43:726–739. PubMed

Adrain C., Cavadas M. The complex life of rhomboid pseudoproteases. FEBS J. 2020;287:4261–4283. PubMed

Fleig L., Bergbold N., Sahasrabudhe P., Geiger B., Kaltak L., Lemberg M.K. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell. 2012;47:558–569. PubMed

Lim J.J., Lee Y., Ly T.T., Kang J.Y., Lee J.G., An J.Y., et al. Structural insights into the interaction of p97 N-terminus domain and VBM motif in rhomboid protease, Rhbdl4. Biochem. J. 2016;473:2863–2880. PubMed

Knopf J.D., Landscheidt N., Pegg C.L., Schulz B.L., Kühnle N., Chao C.W., et al. Intramembrane protease RHBDL4 cleaves oligosaccharyltransferase subunits to target them for ER-associated degradation. J. Cell Sci. 2020;133 PubMed

Knopf J.D., Steigleder S.S., Korn F., Kühnle N., Badenes M., Tauber M., et al. RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling. Nat. Commun. 2024;15 PubMed PMC

Paschkowsky S., Hamzé M., Oestereich F., Munter L.M. Alternative processing of the amyloid precursor protein family by rhomboid protease RHBDL4. J. Biol. Chem. 2016;291:21903–21912. PubMed PMC

Han S.I., Nakakuki M., Nakagawa Y., Wang Y., Araki M., Yamamoto Y., et al. Rhomboid protease RHBDL4/RHBDD1 cleaves SREBP-1c at ER monitoring and regulating fatty acids. PNAS Nexus. 2022 doi: 10.1101/2021.08.24.457590. PubMed DOI PMC

Liu X.N., Tang Z.H., Zhang Y., Pan Q.C., Chen X.H., Yu Y.S., et al. Lentivirus-mediated silencing of rhomboid domain containing 1 suppresses tumor growth and induces apoptosis in hepatoma HepG2 cells. Asian Pac. J. Cancer Prev. 2013;14:5–9. PubMed

Miao F., Zhang M., Zhao Y., Li X., Yao R., Wu F., et al. RHBDD1 upregulates EGFR via the AP-1 pathway in colorectal cancer. Oncotarget. 2017;8:25251–25260. PubMed PMC

Wei X., Lv T., Chen D., Guan J. Lentiviral vector mediated delivery of RHBDD1 shRNA down regulated the proliferation of human glioblastoma cells. Technol. Cancer Res. Treat. 2014;13:87–93. PubMed

Zhang M., Miao F., Huang R., Liu W., Zhao Y., Jiao T., et al. RHBDD1 promotes colorectal cancer metastasis through the Wnt signaling pathway and its downstream target ZEB1. J. Exp. Clin. Cancer Res. 2018;37:22. PubMed PMC

Bach K., Dohnálek J., Škerlová J., Kuzmík J., Poláchová E., Stanchev S., et al. Extensive targeting of chemical space at the prime side of ketoamide inhibitors of rhomboid proteases by branched substituents empowers their selectivity and potency. Eur. J. Med. Chem. 2024;275:116606. PubMed

Strisovsky K., Sharpe H.J., Freeman M. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell. 2009;36:1048–1059. PubMed PMC

Tichá A., Stanchev S., Vinothkumar K.R., Mikles D.C., Pachl P., Began J., et al. General and modular strategy for designing potent, selective, and pharmacologically compliant inhibitors of rhomboid proteases. Cell Chem. Biol. 2017;24:1523–1536.e4. PubMed PMC

Zoll S., Stanchev S., Began J., Škerle J., Lepšík M., Peclinovská L., et al. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures. EMBO J. 2014;33:2408–2421. PubMed PMC

Sherratt A.R., Blais D.R., Ghasriani H., Pezacki J.P., Goto N.K. Activity-based protein profiling of the escherichia coli GlpG rhomboid protein delineates the catalytic core. Biochemistry. 2012;51:7794–7803. PubMed

Arutyunova E., Jiang Z., Yang J., Kulepa A.N., Young H.S., Verhelst S., et al. An internally quenched peptide as a new model substrate for rhomboid intramembrane proteases. Biol. Chem. 2018;399:1389–1397. PubMed

Lysyk L., Brassard R., Arutyunova E., Siebert V., Jiang Z., Takyi E., et al. Insights into the catalytic properties of the mitochondrial rhomboid protease PARL. J. Biol. Chem. 2021;296:100383. PubMed PMC

Strisovsky K. Rhomboid protease inhibitors: emerging tools and future therapeutics. Semin. Cell Dev. Biol. 2016;60:52–62. PubMed

Began J., Cordier B., Březinová J., Delisle J., Hexnerová R., Srb P., et al. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J. 2020;39:e102935. PubMed PMC

Poláchová E., Bach K., Heuten E., Stanchev S., Tichá A., Lampe P., et al. Chemical blockage of the mitochondrial rhomboid protease PARL by novel ketoamide inhibitors reveals its role in PINK1/parkin-dependent mitophagy. J. Med. Chem. 2023;66:251–265. PubMed PMC

Bock J., Kühnle N., Knopf J.D., Landscheidt N., Lee J.G., Ye Y., et al. Rhomboid protease RHBDL4 promotes retrotranslocation of aggregation-prone proteins for degradation. Cell Rep. 2022;40:111175. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–599. PubMed PMC

Van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: where they are and how they behave. Nat Rev Mol cell Biol. 2008;9:112–124. PubMed PMC

Cesares D., Escriba P.V, Rossello C.A. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 2019;20:2167. PubMed PMC

Amaro R.E., Baudry J., Chodera J., Demir Ö., McCammon J.A., Miao Y., et al. Ensemble docking in drug discovery. Biophys. J. 2018;114:2271–2278. PubMed PMC

Cho S., Dickey S.W., Urban S. Crystal structures and inhibition kinetics reveal a two-stage catalytic mechanism with drug design implications for rhomboid proteolysis. Mol. Cell. 2016;61:329–340. PubMed PMC

Baker R.P., Young K., Feng L., Shi Y., Urban S. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl. Acad. Sci. U. S. A. 2007;104:8257–8262. PubMed PMC

Bohg C., Öster C., Türkaydin B., Lisurek M., Sanchez-Carranza P., Lange S., et al. The opening dynamics of the lateral gate regulates the activity of rhomboid proteases. Sci. Adv. 2023;9 doi: 10.1126/sciadv.adh3858. PubMed DOI PMC

Shokhen M., Albeck A. How does the exosite of rhomboid protease affect substrate processing and inhibition? Protein Sci. 2017;26:2355–2366. PubMed PMC

Wu Z., Yan N., Feng L., Oberstein A., Yan H., Baker R.P., et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 2006;13:1084–1091. PubMed

Pierrat O.A., Strisovsky K., Christova Y., Large J., Ansell K., Bouloc N., et al. Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases. ACS Chem. Biol. 2011;6:325–335. PubMed PMC

Arutyunova E., Lysyk L., Morrison M., Brooks C., Joanne Lemieux M. Expression and purification of human mitochondrial intramembrane protease PARL. Methods Mol. Biol. 2021;2302:1–20. PubMed

Tichá A., Stanchev S., Škerle J., Began J., Ingr M., Švehlová K., et al. Sensitive versatile fluorogenic transmembrane peptide substrates for rhomboid intramembrane proteases. J. Biol. Chem. 2017;292:2703–2713. PubMed PMC

Dickey S.W., Baker R.P., Cho S., Urban S. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell. 2013;155:1270–1281. PubMed PMC

Gandhi S., Baker R.P., Cho S., Stanchev S., Strisovsky K., Urban S. Designed parasite-selective rhomboid inhibitors block invasion and clear blood-stage malaria. Cell Chem. Biol. 2020;27:1410–1424.e6. PubMed PMC

Bhaduri S., Scott N.A., Neal S.E. The role of the rhomboid superfamily in ER protein quality control: from mechanisms and functions to diseases. Cold Spring Harb. Perspect. Biol. 2022;15:a041248. PubMed PMC

Lemberg M.K., Menendez J., Misik A., Garcia M., Koth C.M., Freeman M. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 2005;24:464–472. PubMed PMC

Saita S., Nolte H., Fiedler K.U., Kashkar H., Saskia A.V., Zahedi R.P., et al. PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat. Cell Biol. 2017;19:318–328. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...