• This record comes from PubMed

Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy

. 2023 Jan 12 ; 66 (1) : 251-265. [epub] 20221220

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The mitochondrial rhomboid protease PARL regulates mitophagy by balancing intramembrane proteolysis of PINK1 and PGAM5. It has been implicated in the pathogenesis of Parkinson's disease, but its investigation as a possible therapeutic target is challenging in this context because genetic deficiency of PARL may result in compensatory mechanisms. To address this problem, we undertook a hitherto unavailable chemical biology strategy. We developed potent PARL-targeting ketoamide inhibitors and investigated the effects of acute PARL suppression on the processing status of PINK1 intermediates and on Parkin activation. This approach revealed that PARL inhibition leads to a robust activation of the PINK1/Parkin pathway without major secondary effects on mitochondrial properties, which demonstrates that the pharmacological blockage of PARL to boost PINK1/Parkin-dependent mitophagy is a feasible approach to examine novel therapeutic strategies for Parkinson's disease. More generally, this study showcases the power of ketoamide inhibitors for cell biological studies of rhomboid proteases.

See more in PubMed

Dusterhoft S.; Kunzel U.; Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 2200–2209. 10.1016/j.bbamcr.2017.04.016. PubMed DOI

Kuhnle N.; Dederer V.; Lemberg M. K. Intramembrane proteolysis at a glance: from signalling to protein degradation. J. Cell Sci. 2019, 132, jcs21774510.1242/jcs.217745. PubMed DOI

Ticha A.; Collis B.; Strisovsky K. The Rhomboid Superfamily: Structural Mechanisms and Chemical Biology Opportunities. Trends Biochem. Sci. 2018, 43, 726–739. 10.1016/j.tibs.2018.06.009. PubMed DOI

Shi G.; Lee J. R.; Grimes D. A.; Racacho L.; Ye D.; Yang H.; Ross O. A.; Farrer M.; McQuibban G. A.; Bulman D. E. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum. Mol. Genet. 2011, 20, 1966–1974. 10.1093/hmg/ddr077. PubMed DOI

Jin S. M.; Lazarou M.; Wang C.; Kane L. A.; Narendra D. P.; Youle R. J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010, 191, 933–942. 10.1083/jcb.201008084. PubMed DOI PMC

Deas E.; Plun-Favreau H.; Gandhi S.; Desmond H.; Kjaer S.; Loh S. H.; Renton A. E.; Harvey R. J.; Whitworth A. J.; Martins L. M.; Abramov A. Y.; Wood N. W. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 2011, 20, 867–879. 10.1093/hmg/ddq526. PubMed DOI PMC

Meissner C.; Lorenz H.; Weihofen A.; Selkoe D. J.; Lemberg M. K. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011, 117, 856–867. 10.1111/j.1471-4159.2011.07253.x. PubMed DOI

Song W.; Liu W.; Zhao H.; Li S.; Guan X.; Ying J.; Zhang Y.; Miao F.; Zhang M.; Ren X.; Li X.; Wu F.; Zhao Y.; Tian Y.; Wu W.; Fu J.; Liang J.; Wu W.; Liu C.; Yu J.; Zong S.; Miao S.; Zhang X.; Wang L. Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway. Nat. Commun. 2015, 6, 8022.10.1038/ncomms9022. PubMed DOI PMC

Srinivasan P.; Coppens I.; Jacobs-Lorena M. Distinct roles of Plasmodium rhomboid 1 in parasite development and malaria pathogenesis. PLoS Pathog. 2009, 5, e100026210.1371/journal.ppat.1000262. PubMed DOI PMC

Baker R. P.; Wijetilaka R.; Urban S. Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog. 2006, 2, e11310.1371/journal.ppat.0020113. PubMed DOI PMC

Buguliskis J. S.; Brossier F.; Shuman J.; Sibley L. D. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog. 2010, 6, e100085810.1371/journal.ppat.1000858. PubMed DOI PMC

Rugarabamu G.; Marq J. B.; Guerin A.; Lebrun M.; Soldati-Favre D. Distinct contribution of Toxoplasma gondii rhomboid proteases 4 and 5 to micronemal protein protease 1 activity during invasion. Mol. Microbiol. 2015, 97, 244–262. 10.1111/mmi.13021. PubMed DOI

Shen B.; Buguliskis J. S.; Lee T. D.; Sibley L. D. Functional analysis of rhomboid proteases during Toxoplasma invasion. MBio 2014, 5, e01795–e01714. 10.1128/mBio.01795-14. PubMed DOI PMC

Dhingra S.; Kowalski C. H.; Thammahong A.; Beattie S. R.; Bultman K. M.; Cramer R. A.. RbdB, a Rhomboid Protease Critical for SREBP Activation and Virulence in Aspergillus fumigatus. mSphere 2016, 1 (), 10.1128/mSphere.00035-16. PubMed DOI PMC

Vaknin Y.; Hillmann F.; Iannitti R.; Ben Baruch N.; Sandovsky-Losica H.; Shadkchan Y.; Romani L.; Brakhage A.; Kniemeyer O.; Osherov N. Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence. Infect. Immun. 2016, 84, 1866–1878. 10.1128/IAI.00011-16. PubMed DOI PMC

Strisovsky K. Why cells need intramembrane proteases - a mechanistic perspective. FEBS J. 2016, 283, 1837–1845. 10.1111/febs.13638. PubMed DOI

Ticha A.; Stanchev S.; Vinothkumar K. R.; Mikles D. C.; Pachl P.; Began J.; Skerle J.; Svehlova K.; Nguyen M. T. N.; Verhelst S. H. L.; Johnson D. C.; Bachovchin D. A.; Lepsik M.; Majer P.; Strisovsky K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem. Biol. 2017, 24, 1523–1536.e4. 10.1016/j.chembiol.2017.09.007. PubMed DOI PMC

Began J.; Cordier B.; Brezinova J.; Delisle J.; Hexnerova R.; Srb P.; Rampirova P.; Kozisek M.; Baudet M.; Coute Y.; Galinier A.; Veverka V.; Doan T.; Strisovsky K. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J. 2020, 39, e10293510.15252/embj.2019102935. PubMed DOI PMC

Gandhi S.; Baker R. P.; Cho S.; Stanchev S.; Strisovsky K.; Urban S. Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria. Cell. Chem. Biol. 2020, 27, 1410–1424.e6. 10.1016/j.chembiol.2020.08.011. PubMed DOI PMC

Lysyk L.; Brassard R.; Arutyunova E.; Siebert V.; Jiang Z.; Takyi E.; Morrison M.; Young H. S.; Lemberg M. K.; O’Donoghue A. J.; Lemieux M. J. Insights into the catalytic properties of the mitochondrial rhomboid protease PARL. J. Biol. Chem. 2021, 296, 10038310.1016/j.jbc.2021.100383. PubMed DOI PMC

Urban S.; Wolfe M. S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 1883–1888. 10.1073/pnas.0408306102. PubMed DOI PMC

Reading E.; Hall Z.; Martens C.; Haghighi T.; Findlay H.; Ahdash Z.; Politis A.; Booth P. J. Interrogating Membrane Protein Conformational Dynamics within Native Lipid Compositions. Angew. Chem. Int. Ed. Engl. 2017, 56, 15654–15657. 10.1002/anie.201709657. PubMed DOI

Ticha A.; Stanchev S.; Skerle J.; Began J.; Ingr M.; Svehlova K.; Polovinkin L.; Ruzicka M.; Bednarova L.; Hadravova R.; Polachova E.; Rampirova P.; Brezinova J.; Kasicka V.; Majer P.; Strisovsky K. Sensitive Versatile Fluorogenic Transmembrane Peptide Substrates for Rhomboid Intramembrane Proteases. J. Biol. Chem. 2017, 292, 2703–2713. 10.1074/jbc.M116.762849. PubMed DOI PMC

Dickey S. W.; Baker R. P.; Cho S.; Urban S. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 2013, 155, 1270–1281. 10.1016/j.cell.2013.10.053. PubMed DOI PMC

Barniol-Xicota M.; Verhelst S. H. L. Stable and Functional Rhomboid Proteases in Lipid Nanodiscs by Using Diisobutylene/Maleic Acid Copolymers. J. Am. Chem. Soc. 2018, 140, 14557–14561. 10.1021/jacs.8b08441. PubMed DOI

Spinazzi M.; Radaelli E.; Horre K.; Arranz A. M.; Gounko N. V.; Agostinis P.; Maia T. M.; Impens F.; Morais V. A.; Lopez-Lluch G.; Serneels L.; Navas P.; De Strooper B. PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 277–286. 10.1073/pnas.1811938116. PubMed DOI PMC

Saita S.; Tatsuta T.; Lampe P. A.; Konig T.; Ohba Y.; Langer T. PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J. 2018, 37, e9790910.15252/embj.201797909. PubMed DOI PMC

Saita S.; Nolte H.; Fiedler K. U.; Kashkar H.; Venne A. S.; Zahedi R. P.; Kruger M.; Langer T. PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat. Cell Biol. 2017, 19, 318–328. 10.1038/ncb3488. PubMed DOI

Sekine S.; Kanamaru Y.; Koike M.; Nishihara A.; Okada M.; Kinoshita H.; Kamiyama M.; Maruyama J.; Uchiyama Y.; Ishihara N.; Takeda K.; Ichijo H. Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J. Biol. Chem. 2012, 287, 34635–34645. 10.1074/jbc.M112.357509. PubMed DOI PMC

Shi G.; McQuibban G. A. The Mitochondrial Rhomboid Protease PARL Is Regulated by PDK2 to Integrate Mitochondrial Quality Control and Metabolism. Cell Rep. 2017, 18, 1458–1472. 10.1016/j.celrep.2017.01.029. PubMed DOI

Heinitz S.; Klein C.; Djarmati A. The p.S77N presenilin-associated rhomboid-like protein mutation is not a frequent cause of early-onset Parkinson’s disease. Mov. Disord. 2011, 26, 2441–2442. 10.1002/mds.23889. PubMed DOI

Yamano K.; Youle R. J. PINK1 is degraded through the N-end rule pathway. Autophagy 2013, 9, 1758–1769. 10.4161/auto.24633. PubMed DOI PMC

Meissner C.; Lorenz H.; Hehn B.; Lemberg M. K. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 2015, 11, 1484–1498. 10.1080/15548627.2015.1063763. PubMed DOI PMC

Huang S.; Wang X.; Yu J.; Tian Y.; Yang C.; Chen Y.; Chen H.; Ge H. LonP1 regulates mitochondrial network remodeling through the PINK1/Parkin pathway during myoblast differentiation. Am. J. Physiol. Cell Physiol. 2020, 319, C1020–C1028. 10.1152/ajpcell.00589.2019. PubMed DOI

Thomas R. E.; Andrews L. A.; Burman J. L.; Lin W. Y.; Pallanck L. J. PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet. 2014, 10, e100427910.1371/journal.pgen.1004279. PubMed DOI PMC

Wai T.; Saita S.; Nolte H.; Muller S.; Konig T.; Richter-Dennerlein R.; Sprenger H. G.; Madrenas J.; Muhlmeister M.; Brandt U.; Kruger M.; Langer T. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep. 2016, 17, 1844–1856. 10.15252/embr.201642698. PubMed DOI PMC

Bayne A. N.; Trempe J. F. Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell. Mol. Life Sci. 2019, 76, 4589–4611. 10.1007/s00018-019-03203-4. PubMed DOI PMC

Zoll S.; Stanchev S.; Began J.; Skerle J.; Lepsik M.; Peclinovska L.; Majer P.; Strisovsky K. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 2014, 33, 2408–2421. 10.15252/embj.201489367. PubMed DOI PMC

Overduin M.; Esmaili M. Structures and Interactions of Transmembrane Targets in Native Nanodiscs. SLAS Discov. 2019, 24, 943–952. 10.1177/2472555219857691. PubMed DOI

Oluwole A. O.; Danielczak B.; Meister A.; Babalola J. O.; Vargas C.; Keller S. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer. Angew. Chem. Int. Ed. Engl. 2017, 56, 1919–1924. 10.1002/anie.201610778. PubMed DOI PMC

Oluwole A. O.; Klingler J.; Danielczak B.; Babalola J. O.; Vargas C.; Pabst G.; Keller S. Formation of Lipid-Bilayer Nanodiscs by Diisobutylene/Maleic Acid (DIBMA) Copolymer. Langmuir 2017, 33, 14378–14388. 10.1021/acs.langmuir.7b03742. PubMed DOI

Harris N. J.; Booth P. J. Co-Translational Protein Folding in Lipid Membranes. Trends Biochem. Sci. 2019, 44, 729–730. 10.1016/j.tibs.2019.05.002. PubMed DOI

Harris N. J.; Charalambous K.; Findlay H. E.; Booth P. J. Lipids modulate the insertion and folding of the nascent chains of alpha helical membrane proteins. Biochem. Soc. Trans. 2018, 46, 1355–1366. 10.1042/BST20170424. PubMed DOI

Harris N. J.; Reading E.; Ataka K.; Grzegorzewski L.; Charalambous K.; Liu X.; Schlesinger R.; Heberle J.; Booth P. J. Structure formation during translocon-unassisted co-translational membrane protein folding. Sci. Rep. 2017, 7, 8021.10.1038/s41598-017-08522-9. PubMed DOI PMC

Sik A.; Passer B. J.; Koonin E. V.; Pellegrini L. Self-regulated cleavage of the mitochondrial intramembrane-cleaving protease PARL yields Pbeta, a nuclear-targeted peptide. J. Biol. Chem. 2004, 279, 15323–15329. 10.1074/jbc.M313756200. PubMed DOI

Jeyaraju D. V.; Xu L.; Letellier M. C.; Bandaru S.; Zunino R.; Berg E. A.; McBride H. M.; Pellegrini L. Phosphorylation and cleavage of presenilin-associated rhomboid-like protein (PARL) promotes changes in mitochondrial morphology. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 18562–18567. 10.1073/pnas.0604983103. PubMed DOI PMC

Lapek J. D. Jr.; Jiang Z.; Wozniak J. M.; Arutyunova E.; Wang S. C.; Lemieux M. J.; Gonzalez D. J.; O’Donoghue A. J. Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Mol. Cell. Proteomics 2019, 18, 968–981. 10.1074/mcp.TIR118.001099. PubMed DOI PMC

Cho S.; Dickey S. W.; Urban S. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis. Mol. Cell 2016, 61, 329–340. 10.1016/j.molcel.2015.12.022. PubMed DOI PMC

Greene A. W.; Grenier K.; Aguileta M. A.; Muise S.; Farazifard R.; Haque M. E.; McBride H. M.; Park D. S.; Fon E. A. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 2012, 13, 378–385. 10.1038/embor.2012.14. PubMed DOI PMC

Sekine S.; Wang C.; Sideris D. P.; Bunker E.; Zhang Z.; Youle R. J. Reciprocal Roles of Tom7 and OMA1 during Mitochondrial Import and Activation of PINK1. Mol. Cell 2019, 73, 1028–1043.e5. 10.1016/j.molcel.2019.01.002. PubMed DOI

Weihofen A.; Ostaszewski B.; Minami Y.; Selkoe D. J. Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum. Mol. Genet. 2008, 17, 602–616. 10.1093/hmg/ddm334. PubMed DOI

Narendra D. P.; Jin S. M.; Tanaka A.; Suen D. F.; Gautier C. A.; Shen J.; Cookson M. R.; Youle R. J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8, e100029810.1371/journal.pbio.1000298. PubMed DOI PMC

Matsuda N.; Sato S.; Shiba K.; Okatsu K.; Saisho K.; Gautier C. A.; Sou Y. S.; Saiki S.; Kawajiri S.; Sato F.; Kimura M.; Komatsu M.; Hattori N.; Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010, 189, 211–221. 10.1083/jcb.200910140. PubMed DOI PMC

Vives-Bauza C.; Zhou C.; Huang Y.; Cui M.; de Vries R. L.; Kim J.; May J.; Tocilescu M. A.; Liu W.; Ko H. S.; Magrane J.; Moore D. J.; Dawson V. L.; Grailhe R.; Dawson T. M.; Li C.; Tieu K.; Przedborski S. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 378–383. 10.1073/pnas.0911187107. PubMed DOI PMC

Soubannier V.; McLelland G. L.; Zunino R.; Braschi E.; Rippstein P.; Fon E. A.; McBride H. M. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 2012, 22, 135–141. 10.1016/j.cub.2011.11.057. PubMed DOI

McLelland G. L.; Soubannier V.; Chen C. X.; McBride H. M.; Fon E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014, 33, 282–295. 10.1002/embj.201385902. PubMed DOI PMC

Souček M.; Urban J. An Efficient Method for Preparation of Optically Active N-Protected α-Amino Aldehydes from N-Protected α-Amino Alcohols. Collect. Czech. Chem. Commun. 1995, 60, 693–696. 10.1135/cccc19950693. DOI

Coste J.; Frerot E.; Jouin P. Coupling N-Methylated Amino-Acids Using Pybrop and Pyclop Halogenophosphonium Salts - Mechanism and Fields of Application. J. Org. Chem. 1994, 59, 2437–2446. 10.1021/jo00088a027. DOI

Gibson D. G. Enzymatic assembly of overlapping DNA fragments. Methods Enzymol. 2011, 498, 349–361. 10.1016/B978-0-12-385120-8.00015-2. PubMed DOI PMC

Lorenz H.; Hailey D. W.; Wunder C.; Lippincott-Schwartz J. The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat. Protoc. 2006, 1, 276–279. 10.1038/nprot.2006.42. PubMed DOI

Miroux B.; Walker J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 1996, 260, 289–298. 10.1006/jmbi.1996.0399. PubMed DOI

Schwarz D.; Junge F.; Durst F.; Frolich N.; Schneider B.; Reckel S.; Sobhanifar S.; Dotsch V.; Bernhard F. Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat. Protoc. 2007, 2, 2945–2957. 10.1038/nprot.2007.426. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...