Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36540942
PubMed Central
PMC9841525
DOI
10.1021/acs.jmedchem.2c01092
Knihovny.cz E-resources
- MeSH
- Endopeptidases MeSH
- Humans MeSH
- Metalloproteases genetics metabolism MeSH
- Mitochondrial Proteins metabolism MeSH
- Mitophagy MeSH
- Parkinson Disease * drug therapy MeSH
- Peptide Hydrolases * MeSH
- Protein Kinases metabolism MeSH
- Ubiquitin-Protein Ligases metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Endopeptidases MeSH
- Metalloproteases MeSH
- Mitochondrial Proteins MeSH
- PARL protein, human MeSH Browser
- Peptide Hydrolases * MeSH
- Protein Kinases MeSH
- Ubiquitin-Protein Ligases MeSH
The mitochondrial rhomboid protease PARL regulates mitophagy by balancing intramembrane proteolysis of PINK1 and PGAM5. It has been implicated in the pathogenesis of Parkinson's disease, but its investigation as a possible therapeutic target is challenging in this context because genetic deficiency of PARL may result in compensatory mechanisms. To address this problem, we undertook a hitherto unavailable chemical biology strategy. We developed potent PARL-targeting ketoamide inhibitors and investigated the effects of acute PARL suppression on the processing status of PINK1 intermediates and on Parkin activation. This approach revealed that PARL inhibition leads to a robust activation of the PINK1/Parkin pathway without major secondary effects on mitochondrial properties, which demonstrates that the pharmacological blockage of PARL to boost PINK1/Parkin-dependent mitophagy is a feasible approach to examine novel therapeutic strategies for Parkinson's disease. More generally, this study showcases the power of ketoamide inhibitors for cell biological studies of rhomboid proteases.
1st Faculty of Medicine Charles University Kateřinská 32 Prague 121 08 Czech Republic
Max Planck Institute for Biology of Ageing Joseph Stelzmann Str 9b Cologne 50931 Germany
See more in PubMed
Dusterhoft S.; Kunzel U.; Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 2200–2209. 10.1016/j.bbamcr.2017.04.016. PubMed DOI
Kuhnle N.; Dederer V.; Lemberg M. K. Intramembrane proteolysis at a glance: from signalling to protein degradation. J. Cell Sci. 2019, 132, jcs21774510.1242/jcs.217745. PubMed DOI
Ticha A.; Collis B.; Strisovsky K. The Rhomboid Superfamily: Structural Mechanisms and Chemical Biology Opportunities. Trends Biochem. Sci. 2018, 43, 726–739. 10.1016/j.tibs.2018.06.009. PubMed DOI
Shi G.; Lee J. R.; Grimes D. A.; Racacho L.; Ye D.; Yang H.; Ross O. A.; Farrer M.; McQuibban G. A.; Bulman D. E. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum. Mol. Genet. 2011, 20, 1966–1974. 10.1093/hmg/ddr077. PubMed DOI
Jin S. M.; Lazarou M.; Wang C.; Kane L. A.; Narendra D. P.; Youle R. J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010, 191, 933–942. 10.1083/jcb.201008084. PubMed DOI PMC
Deas E.; Plun-Favreau H.; Gandhi S.; Desmond H.; Kjaer S.; Loh S. H.; Renton A. E.; Harvey R. J.; Whitworth A. J.; Martins L. M.; Abramov A. Y.; Wood N. W. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 2011, 20, 867–879. 10.1093/hmg/ddq526. PubMed DOI PMC
Meissner C.; Lorenz H.; Weihofen A.; Selkoe D. J.; Lemberg M. K. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011, 117, 856–867. 10.1111/j.1471-4159.2011.07253.x. PubMed DOI
Song W.; Liu W.; Zhao H.; Li S.; Guan X.; Ying J.; Zhang Y.; Miao F.; Zhang M.; Ren X.; Li X.; Wu F.; Zhao Y.; Tian Y.; Wu W.; Fu J.; Liang J.; Wu W.; Liu C.; Yu J.; Zong S.; Miao S.; Zhang X.; Wang L. Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway. Nat. Commun. 2015, 6, 8022.10.1038/ncomms9022. PubMed DOI PMC
Srinivasan P.; Coppens I.; Jacobs-Lorena M. Distinct roles of Plasmodium rhomboid 1 in parasite development and malaria pathogenesis. PLoS Pathog. 2009, 5, e100026210.1371/journal.ppat.1000262. PubMed DOI PMC
Baker R. P.; Wijetilaka R.; Urban S. Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog. 2006, 2, e11310.1371/journal.ppat.0020113. PubMed DOI PMC
Buguliskis J. S.; Brossier F.; Shuman J.; Sibley L. D. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog. 2010, 6, e100085810.1371/journal.ppat.1000858. PubMed DOI PMC
Rugarabamu G.; Marq J. B.; Guerin A.; Lebrun M.; Soldati-Favre D. Distinct contribution of Toxoplasma gondii rhomboid proteases 4 and 5 to micronemal protein protease 1 activity during invasion. Mol. Microbiol. 2015, 97, 244–262. 10.1111/mmi.13021. PubMed DOI
Shen B.; Buguliskis J. S.; Lee T. D.; Sibley L. D. Functional analysis of rhomboid proteases during Toxoplasma invasion. MBio 2014, 5, e01795–e01714. 10.1128/mBio.01795-14. PubMed DOI PMC
Dhingra S.; Kowalski C. H.; Thammahong A.; Beattie S. R.; Bultman K. M.; Cramer R. A.. RbdB, a Rhomboid Protease Critical for SREBP Activation and Virulence in Aspergillus fumigatus. mSphere 2016, 1 (), 10.1128/mSphere.00035-16. PubMed DOI PMC
Vaknin Y.; Hillmann F.; Iannitti R.; Ben Baruch N.; Sandovsky-Losica H.; Shadkchan Y.; Romani L.; Brakhage A.; Kniemeyer O.; Osherov N. Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence. Infect. Immun. 2016, 84, 1866–1878. 10.1128/IAI.00011-16. PubMed DOI PMC
Strisovsky K. Why cells need intramembrane proteases - a mechanistic perspective. FEBS J. 2016, 283, 1837–1845. 10.1111/febs.13638. PubMed DOI
Ticha A.; Stanchev S.; Vinothkumar K. R.; Mikles D. C.; Pachl P.; Began J.; Skerle J.; Svehlova K.; Nguyen M. T. N.; Verhelst S. H. L.; Johnson D. C.; Bachovchin D. A.; Lepsik M.; Majer P.; Strisovsky K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem. Biol. 2017, 24, 1523–1536.e4. 10.1016/j.chembiol.2017.09.007. PubMed DOI PMC
Began J.; Cordier B.; Brezinova J.; Delisle J.; Hexnerova R.; Srb P.; Rampirova P.; Kozisek M.; Baudet M.; Coute Y.; Galinier A.; Veverka V.; Doan T.; Strisovsky K. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J. 2020, 39, e10293510.15252/embj.2019102935. PubMed DOI PMC
Gandhi S.; Baker R. P.; Cho S.; Stanchev S.; Strisovsky K.; Urban S. Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria. Cell. Chem. Biol. 2020, 27, 1410–1424.e6. 10.1016/j.chembiol.2020.08.011. PubMed DOI PMC
Lysyk L.; Brassard R.; Arutyunova E.; Siebert V.; Jiang Z.; Takyi E.; Morrison M.; Young H. S.; Lemberg M. K.; O’Donoghue A. J.; Lemieux M. J. Insights into the catalytic properties of the mitochondrial rhomboid protease PARL. J. Biol. Chem. 2021, 296, 10038310.1016/j.jbc.2021.100383. PubMed DOI PMC
Urban S.; Wolfe M. S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 1883–1888. 10.1073/pnas.0408306102. PubMed DOI PMC
Reading E.; Hall Z.; Martens C.; Haghighi T.; Findlay H.; Ahdash Z.; Politis A.; Booth P. J. Interrogating Membrane Protein Conformational Dynamics within Native Lipid Compositions. Angew. Chem. Int. Ed. Engl. 2017, 56, 15654–15657. 10.1002/anie.201709657. PubMed DOI
Ticha A.; Stanchev S.; Skerle J.; Began J.; Ingr M.; Svehlova K.; Polovinkin L.; Ruzicka M.; Bednarova L.; Hadravova R.; Polachova E.; Rampirova P.; Brezinova J.; Kasicka V.; Majer P.; Strisovsky K. Sensitive Versatile Fluorogenic Transmembrane Peptide Substrates for Rhomboid Intramembrane Proteases. J. Biol. Chem. 2017, 292, 2703–2713. 10.1074/jbc.M116.762849. PubMed DOI PMC
Dickey S. W.; Baker R. P.; Cho S.; Urban S. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 2013, 155, 1270–1281. 10.1016/j.cell.2013.10.053. PubMed DOI PMC
Barniol-Xicota M.; Verhelst S. H. L. Stable and Functional Rhomboid Proteases in Lipid Nanodiscs by Using Diisobutylene/Maleic Acid Copolymers. J. Am. Chem. Soc. 2018, 140, 14557–14561. 10.1021/jacs.8b08441. PubMed DOI
Spinazzi M.; Radaelli E.; Horre K.; Arranz A. M.; Gounko N. V.; Agostinis P.; Maia T. M.; Impens F.; Morais V. A.; Lopez-Lluch G.; Serneels L.; Navas P.; De Strooper B. PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 277–286. 10.1073/pnas.1811938116. PubMed DOI PMC
Saita S.; Tatsuta T.; Lampe P. A.; Konig T.; Ohba Y.; Langer T. PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J. 2018, 37, e9790910.15252/embj.201797909. PubMed DOI PMC
Saita S.; Nolte H.; Fiedler K. U.; Kashkar H.; Venne A. S.; Zahedi R. P.; Kruger M.; Langer T. PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat. Cell Biol. 2017, 19, 318–328. 10.1038/ncb3488. PubMed DOI
Sekine S.; Kanamaru Y.; Koike M.; Nishihara A.; Okada M.; Kinoshita H.; Kamiyama M.; Maruyama J.; Uchiyama Y.; Ishihara N.; Takeda K.; Ichijo H. Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J. Biol. Chem. 2012, 287, 34635–34645. 10.1074/jbc.M112.357509. PubMed DOI PMC
Shi G.; McQuibban G. A. The Mitochondrial Rhomboid Protease PARL Is Regulated by PDK2 to Integrate Mitochondrial Quality Control and Metabolism. Cell Rep. 2017, 18, 1458–1472. 10.1016/j.celrep.2017.01.029. PubMed DOI
Heinitz S.; Klein C.; Djarmati A. The p.S77N presenilin-associated rhomboid-like protein mutation is not a frequent cause of early-onset Parkinson’s disease. Mov. Disord. 2011, 26, 2441–2442. 10.1002/mds.23889. PubMed DOI
Yamano K.; Youle R. J. PINK1 is degraded through the N-end rule pathway. Autophagy 2013, 9, 1758–1769. 10.4161/auto.24633. PubMed DOI PMC
Meissner C.; Lorenz H.; Hehn B.; Lemberg M. K. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 2015, 11, 1484–1498. 10.1080/15548627.2015.1063763. PubMed DOI PMC
Huang S.; Wang X.; Yu J.; Tian Y.; Yang C.; Chen Y.; Chen H.; Ge H. LonP1 regulates mitochondrial network remodeling through the PINK1/Parkin pathway during myoblast differentiation. Am. J. Physiol. Cell Physiol. 2020, 319, C1020–C1028. 10.1152/ajpcell.00589.2019. PubMed DOI
Thomas R. E.; Andrews L. A.; Burman J. L.; Lin W. Y.; Pallanck L. J. PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet. 2014, 10, e100427910.1371/journal.pgen.1004279. PubMed DOI PMC
Wai T.; Saita S.; Nolte H.; Muller S.; Konig T.; Richter-Dennerlein R.; Sprenger H. G.; Madrenas J.; Muhlmeister M.; Brandt U.; Kruger M.; Langer T. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep. 2016, 17, 1844–1856. 10.15252/embr.201642698. PubMed DOI PMC
Bayne A. N.; Trempe J. F. Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell. Mol. Life Sci. 2019, 76, 4589–4611. 10.1007/s00018-019-03203-4. PubMed DOI PMC
Zoll S.; Stanchev S.; Began J.; Skerle J.; Lepsik M.; Peclinovska L.; Majer P.; Strisovsky K. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 2014, 33, 2408–2421. 10.15252/embj.201489367. PubMed DOI PMC
Overduin M.; Esmaili M. Structures and Interactions of Transmembrane Targets in Native Nanodiscs. SLAS Discov. 2019, 24, 943–952. 10.1177/2472555219857691. PubMed DOI
Oluwole A. O.; Danielczak B.; Meister A.; Babalola J. O.; Vargas C.; Keller S. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer. Angew. Chem. Int. Ed. Engl. 2017, 56, 1919–1924. 10.1002/anie.201610778. PubMed DOI PMC
Oluwole A. O.; Klingler J.; Danielczak B.; Babalola J. O.; Vargas C.; Pabst G.; Keller S. Formation of Lipid-Bilayer Nanodiscs by Diisobutylene/Maleic Acid (DIBMA) Copolymer. Langmuir 2017, 33, 14378–14388. 10.1021/acs.langmuir.7b03742. PubMed DOI
Harris N. J.; Booth P. J. Co-Translational Protein Folding in Lipid Membranes. Trends Biochem. Sci. 2019, 44, 729–730. 10.1016/j.tibs.2019.05.002. PubMed DOI
Harris N. J.; Charalambous K.; Findlay H. E.; Booth P. J. Lipids modulate the insertion and folding of the nascent chains of alpha helical membrane proteins. Biochem. Soc. Trans. 2018, 46, 1355–1366. 10.1042/BST20170424. PubMed DOI
Harris N. J.; Reading E.; Ataka K.; Grzegorzewski L.; Charalambous K.; Liu X.; Schlesinger R.; Heberle J.; Booth P. J. Structure formation during translocon-unassisted co-translational membrane protein folding. Sci. Rep. 2017, 7, 8021.10.1038/s41598-017-08522-9. PubMed DOI PMC
Sik A.; Passer B. J.; Koonin E. V.; Pellegrini L. Self-regulated cleavage of the mitochondrial intramembrane-cleaving protease PARL yields Pbeta, a nuclear-targeted peptide. J. Biol. Chem. 2004, 279, 15323–15329. 10.1074/jbc.M313756200. PubMed DOI
Jeyaraju D. V.; Xu L.; Letellier M. C.; Bandaru S.; Zunino R.; Berg E. A.; McBride H. M.; Pellegrini L. Phosphorylation and cleavage of presenilin-associated rhomboid-like protein (PARL) promotes changes in mitochondrial morphology. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 18562–18567. 10.1073/pnas.0604983103. PubMed DOI PMC
Lapek J. D. Jr.; Jiang Z.; Wozniak J. M.; Arutyunova E.; Wang S. C.; Lemieux M. J.; Gonzalez D. J.; O’Donoghue A. J. Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Mol. Cell. Proteomics 2019, 18, 968–981. 10.1074/mcp.TIR118.001099. PubMed DOI PMC
Cho S.; Dickey S. W.; Urban S. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis. Mol. Cell 2016, 61, 329–340. 10.1016/j.molcel.2015.12.022. PubMed DOI PMC
Greene A. W.; Grenier K.; Aguileta M. A.; Muise S.; Farazifard R.; Haque M. E.; McBride H. M.; Park D. S.; Fon E. A. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 2012, 13, 378–385. 10.1038/embor.2012.14. PubMed DOI PMC
Sekine S.; Wang C.; Sideris D. P.; Bunker E.; Zhang Z.; Youle R. J. Reciprocal Roles of Tom7 and OMA1 during Mitochondrial Import and Activation of PINK1. Mol. Cell 2019, 73, 1028–1043.e5. 10.1016/j.molcel.2019.01.002. PubMed DOI
Weihofen A.; Ostaszewski B.; Minami Y.; Selkoe D. J. Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum. Mol. Genet. 2008, 17, 602–616. 10.1093/hmg/ddm334. PubMed DOI
Narendra D. P.; Jin S. M.; Tanaka A.; Suen D. F.; Gautier C. A.; Shen J.; Cookson M. R.; Youle R. J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8, e100029810.1371/journal.pbio.1000298. PubMed DOI PMC
Matsuda N.; Sato S.; Shiba K.; Okatsu K.; Saisho K.; Gautier C. A.; Sou Y. S.; Saiki S.; Kawajiri S.; Sato F.; Kimura M.; Komatsu M.; Hattori N.; Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010, 189, 211–221. 10.1083/jcb.200910140. PubMed DOI PMC
Vives-Bauza C.; Zhou C.; Huang Y.; Cui M.; de Vries R. L.; Kim J.; May J.; Tocilescu M. A.; Liu W.; Ko H. S.; Magrane J.; Moore D. J.; Dawson V. L.; Grailhe R.; Dawson T. M.; Li C.; Tieu K.; Przedborski S. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 378–383. 10.1073/pnas.0911187107. PubMed DOI PMC
Soubannier V.; McLelland G. L.; Zunino R.; Braschi E.; Rippstein P.; Fon E. A.; McBride H. M. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 2012, 22, 135–141. 10.1016/j.cub.2011.11.057. PubMed DOI
McLelland G. L.; Soubannier V.; Chen C. X.; McBride H. M.; Fon E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014, 33, 282–295. 10.1002/embj.201385902. PubMed DOI PMC
Souček M.; Urban J. An Efficient Method for Preparation of Optically Active N-Protected α-Amino Aldehydes from N-Protected α-Amino Alcohols. Collect. Czech. Chem. Commun. 1995, 60, 693–696. 10.1135/cccc19950693. DOI
Coste J.; Frerot E.; Jouin P. Coupling N-Methylated Amino-Acids Using Pybrop and Pyclop Halogenophosphonium Salts - Mechanism and Fields of Application. J. Org. Chem. 1994, 59, 2437–2446. 10.1021/jo00088a027. DOI
Gibson D. G. Enzymatic assembly of overlapping DNA fragments. Methods Enzymol. 2011, 498, 349–361. 10.1016/B978-0-12-385120-8.00015-2. PubMed DOI PMC
Lorenz H.; Hailey D. W.; Wunder C.; Lippincott-Schwartz J. The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat. Protoc. 2006, 1, 276–279. 10.1038/nprot.2006.42. PubMed DOI
Miroux B.; Walker J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 1996, 260, 289–298. 10.1006/jmbi.1996.0399. PubMed DOI
Schwarz D.; Junge F.; Durst F.; Frolich N.; Schneider B.; Reckel S.; Sobhanifar S.; Dotsch V.; Bernhard F. Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat. Protoc. 2007, 2, 2945–2957. 10.1038/nprot.2007.426. PubMed DOI
An in vitro platform for the enzymatic characterization of the rhomboid protease RHBDL4
4-Oxo-β-lactams as Covalent Inhibitors of the Mitochondrial Intramembrane Protease PARL