Comprehensive Mechanistic View of the Hydrolysis of Oxadiazole-Based Inhibitors by Histone Deacetylase 6 (HDAC6)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37392419
PubMed Central
PMC10367051
DOI
10.1021/acschembio.3c00212
Knihovny.cz E-zdroje
- MeSH
- histondeacetylasa 6 chemie MeSH
- hydrolýza MeSH
- inhibitory histondeacetylas * farmakologie MeSH
- kyseliny hydroxamové chemie MeSH
- oxadiazoly * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histondeacetylasa 6 MeSH
- inhibitory histondeacetylas * MeSH
- kyseliny hydroxamové MeSH
- oxadiazoly * MeSH
Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform. Surprisingly, but in line with a very recent finding reported in the literature, a crystal structure of the HDAC6/inhibitor complex revealed that hydrolysis of the oxadiazole ring transforms the parent oxadiazole into an acylhydrazide through a sequence of two hydrolytic steps. An identical cleavage pattern was also observed both in vitro using the purified HDAC6 enzyme as well as in cellular systems. By employing advanced quantum and molecular mechanics (QM/MM) and QM calculations, we elucidated the mechanistic details of the two hydrolytic steps to obtain a comprehensive mechanistic view of the double hydrolysis of the oxadiazole ring. This was achieved by fully characterizing the reaction coordinate, including identification of the structures of all intermediates and transition states, together with calculations of their respective activation (free) energies. In addition, we ruled out several (intuitively) competing pathways. The computed data (ΔG‡ ≈ 21 kcal·mol-1 for the rate-determining step of the overall dual hydrolysis) are in very good agreement with the experimentally determined rate constants, which a posteriori supports the proposed reaction mechanism. We also clearly (and quantitatively) explain the role of the -CF3 or -CHF2 substituent on the oxadiazole ring, which is a prerequisite for hydrolysis to occur. Overall, our data provide compelling evidence that the oxadiazole warheads can be efficiently transformed within the active sites of target metallohydrolases to afford reaction products possessing distinct selectivity and inhibition profiles.
Zobrazit více v PubMed
Li G.; Tian Y.; Zhu W.-G. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front. Cell Dev. Biol. 2020, 8, 57694610.3389/fcell.2020.576946. PubMed DOI PMC
Milazzo G.; Mercatelli D.; Di Muzio G.; Triboli L.; De Rosa P.; Perini G.; Giorgi F. M. Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes 2020, 11, 556.10.3390/genes11050556. PubMed DOI PMC
Shen S.; Kozikowski A. P. A patent review of histone deacetylase 6 inhibitors in neurodegenerative diseases (2014-2019). Expert Opin. Ther. Pat. 2020, 30, 121–136. 10.1080/13543776.2019.1708901. PubMed DOI PMC
Zhang X.-H.; Qin M.; Wu H.-P.; Khamis M. Y.; Li Y.-H.; Ma L.-Y.; Liu H.-M. A Review of Progress in Histone Deacetylase 6 Inhibitors Research: Structural Specificity and Functional Diversity. J. Med. Chem. 2021, 64, 1362–1391. 10.1021/acs.jmedchem.0c01782. PubMed DOI
Lechner S.; Malgapo M. I. P.; Gratz C.; Steimbach R. R.; Baron A.; Ruther P.; Nadal S.; Stumpf C.; Loos C.; Ku X.; Prokofeva P.; Lautenbacher L.; Heimburg T.; Wurf V.; Meng C.; Wilhelm M.; Sippl W.; Kleigrewe K.; Pauling J. K.; Kramer K.; Miller A. K.; Pfaffl M. W.; Linder M. E.; Kuster B.; Medard G. Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nat. Chem. Biol. 2022, 18, 812–820. 10.1038/s41589-022-01015-5. PubMed DOI PMC
Lee M. S.; Isobe M. Metabolic activation of the potent mutagen, 2-naphthohydroxamic acid, in Salmonella typhimurium TA98. Cancer Res. 1990, 50, 4300–4307. PubMed
Shen S.; Kozikowski A. P. Why Hydroxamates May Not Be the Best Histone Deacetylase Inhibitors--What Some May Have Forgotten or Would Rather Forget?. ChemMedChem 2016, 11, 15–21. 10.1002/cmdc.201500486. PubMed DOI PMC
Summers J. B.; Gunn B. P.; Mazdiyasni H.; Goetze A. M.; Young P. R.; Bouska J. B.; Dyer R. D.; Brooks D. W.; Carter G. W. In vivo characterization of hydroxamic acid inhibitors of 5-lipoxygenase. J. Med. Chem. 1987, 30, 2121–2126. 10.1021/jm00394a032. PubMed DOI
Frühauf A.; Meyer-Almes F. J. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules 2021, 26, 5151.10.3390/molecules26175151. PubMed DOI PMC
Ho T. C. S.; Chan A. H. Y.; Ganesan A. Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. J. Med. Chem. 2020, 63, 12460–12484. 10.1021/acs.jmedchem.0c00830. PubMed DOI
Melesina J.; Simoben C. V.; Praetorius L.; Bulbul E. F.; Robaa D.; Sippl W. Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem 2021, 16, 1336–1359. 10.1002/cmdc.202000934. PubMed DOI
Porter N. J.; Shen S.; Barinka C.; Kozikowski A. P.; Christianson D. W. Molecular Basis for the Selective Inhibition of Histone Deacetylase 6 by a Mercaptoacetamide Inhibitor. ACS Med. Chem. Lett. 2018, 9, 1301–1305. 10.1021/acsmedchemlett.8b00487. PubMed DOI PMC
Guerriero J. L.; Sotayo A.; Ponichtera H. E.; Castrillon J. A.; Pourzia A. L.; Schad S.; Johnson S. F.; Carrasco R. D.; Lazo S.; Bronson R. T.; Davis S. P.; Lobera M.; Nolan M. A.; Letai A. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 2017, 543, 428–432. 10.1038/nature21409. PubMed DOI PMC
Keuler T.; Konig B.; Buckreiss N.; Kraft F. B.; Konig P.; Schaker-Hubner L.; Steinebach C.; Bendas G.; Gutschow M.; Hansen F. K. Development of the first non-hydroxamate selective HDAC6 degraders. Chem. Commun. 2022, 58, 11087–11090. 10.1039/D2CC03712B. PubMed DOI
Lobera M.; Madauss K. P.; Pohlhaus D. T.; Wright Q. G.; Trocha M.; Schmidt D. R.; Baloglu E.; Trump R. P.; Head M. S.; Hofmann G. A.; Murray-Thompson M.; Schwartz B.; Chakravorty S.; Wu Z.; Mander P. K.; Kruidenier L.; Reid R. A.; Burkhart W.; Turunen B. J.; Rong J. X.; Wagner C.; Moyer M. B.; Wells C.; Hong X.; Moore J. T.; Williams J. D.; Soler D.; Ghosh S.; Nolan M. A. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol. 2013, 9, 319–325. 10.1038/nchembio.1223. PubMed DOI
Hai Y.; Christianson D. W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 2016, 12, 741–747. 10.1038/nchembio.2134. PubMed DOI PMC
Miyake Y.; Keusch J. J.; Wang L.; Saito M.; Hess D.; Wang X.; Melancon B. J.; Helquist P.; Gut H.; Matthias P. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol. 2016, 12, 748–754. 10.1038/nchembio.2140. PubMed DOI
Pulya S.; Amin S. A.; Adhikari N.; Biswas S.; Jha T.; Ghosh B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol. Res. 2021, 163, 10527410.1016/j.phrs.2020.105274. PubMed DOI
Shukla S.; Komarek J.; Novakova Z.; Nedvedova J.; Ustinova K.; Vankova P.; Kadek A.; Uetrecht C.; Mertens H.; Barinka C. In-solution structure and oligomerization of human histone deacetylase 6—an integrative approach. FEBS J. 2023, 290, 821–836. 10.1111/febs.16616. PubMed DOI
Prejano M.; Vidossich P.; Russo N.; De Vivo M.; Marino T. Insights into the Catalytic Mechanism of Domains CD1 and CD2 in Histone Deacetylase 6 from Quantum Calculations. ACS Catal. 2021, 11, 3084–3093. 10.1021/acscatal.0c04729. DOI
Navrátil V.; Klusak V.; Rulisek L. Theoretical Aspects of Hydrolysis of Peptide Bonds by Zinc Metalloenzymes. Chem. - Eur. J. 2013, 19, 16634–16645. 10.1002/chem.201302663. PubMed DOI
Bím D.; Navratil M.; Gutten O.; Konvalinka J.; Kutil Z.; Culka M.; Navratil V.; Alexandrova A. N.; Barinka C.; Rulisek L. Predicting Effects of Site-Directed Mutagenesis on Enzyme Kinetics by QM/MM and QM Calculations: A Case of Glutamate Carboxypeptidase II. J. Phys. Chem. B 2022, 126, 132–143. 10.1021/acs.jpcb.1c09240. PubMed DOI
Klusák V.; Barinka C.; Plechanovova A.; Mlcochova P.; Konvalinka J.; Rulisek L.; Lubkowski J. Reaction Mechanism of Glutamate Carboxypeptidase II Revealed by Mutagenesis, X-ray Crystallography, and Computational Methods. Biochemistry 2009, 48, 4126–4138. 10.1021/bi900220s. PubMed DOI PMC
Cellupica E.; Caprini G.; Cordella P.; Cukier C.; Fossati G.; Marchini M.; Rocchio I.; Sandrone G.; Vanoni M. A.; Vergani B.; Zrubek K.; Stevenazzi A.; Steinkuhler C. Difluoromethyl-1,3,4-oxadiazoles are slow-binding substrate analog inhibitors of histone deacetylase 6 with unprecedented isotype selectivity. J. Biol. Chem. 2022, 299, 10280010.1016/j.jbc.2022.102800. PubMed DOI PMC
Becke A. D. Density-Functional Thermochemistry. 3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Porter N. J.; Christianson D. W. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr. Opin. Struct. Biol. 2019, 59, 9–18. 10.1016/j.sbi.2019.01.004. PubMed DOI PMC
Wu R.; Wang S.; Zhou N.; Cao Z.; Zhang Y. A Proton-Shuttle Reaction Mechanism for Histone Deacetylase 8 and the Catalytic Role of Metal Ions. J. Am. Chem. Soc. 2010, 132, 9471–9479. 10.1021/ja103932d. PubMed DOI PMC
Kipouros I.; Stanczak A.; Culka M.; Andris E.; Machonkin T. R.; Rulisek L.; Solomon E. I. Evidence for H-bonding interactions to the mu-eta(2):eta(2)-peroxide of oxy-tyrosinase that activate its coupled binuclear copper site. Chem. Commun. 2022, 58, 3913–3916. 10.1039/D2CC00750A. PubMed DOI PMC
Jiang Y.; Xu J.; Yue K.; Huang C.; Qin M.; Chi D.; Yu Q.; Zhu Y.; Hou X.; Xu T.; Li M.; Chou C. J.; Li X. Potent Hydrazide-Based HDAC Inhibitors with a Superior Pharmacokinetic Profile for Efficient Treatment of Acute Myeloid Leukemia In Vivo. J. Med. Chem. 2022, 65, 285–302. 10.1021/acs.jmedchem.1c01472. PubMed DOI
Sun P.; Wang J.; Khan K. S.; Yang W.; Ng B. W.; Ilment N.; Zessin M.; Bulbul E. F.; Robaa D.; Erdmann F.; Schmidt M.; Romier C.; Schutkowski M.; Cheng A. S.; Sippl W. Development of Alkylated Hydrazides as Highly Potent and Selective Class I Histone Deacetylase Inhibitors with T cell Modulatory Properties. J. Med. Chem. 2022, 65, 16313–16337. 10.1021/acs.jmedchem.2c01132. PubMed DOI
Wang Y.; Stowe R. L.; Pinello C. E.; Tian G.; Madoux F.; Li D.; Zhao L. Y.; Li J. L.; Wang Y.; Wang Y.; Ma H.; Hodder P.; Roush W. R.; Liao D. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem. Biol. 2015, 22, 273–284. 10.1016/j.chembiol.2014.12.015. PubMed DOI PMC
Ptacek J.; Snajdr I.; Schimer J.; Kutil Z.; Mikesova J.; Baranova P.; Havlinova B.; Tueckmantel W.; Majer P.; Kozikowski A.; Barinka C. Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells. Int. J. Mol. Sci. 2023, 24, 4720.10.3390/ijms24054720. PubMed DOI PMC
Biernacki K.; Dasko M.; Ciupak O.; Kubinski K.; Rachon J.; Demkowicz S. Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals 2020, 13, 111.10.3390/ph13060111. PubMed DOI PMC
Maciolek C. M.; Ma B.; Menzel K.; Laliberte S.; Bateman K.; Krolikowski P.; Gibson C. R. Novel cytochrome P450-mediated ring opening of the 1,3,4-oxadiazole in setileuton, a 5-lipoxygenase inhibitor. Drug Metab. Dispos. 2011, 39, 763–770. 10.1124/dmd.110.037366. PubMed DOI
Sinha B. K.; Mason R. P. Biotransformation of Hydrazine Dervatives in the Mechanism of Toxicity. J. Drug Metab. Toxicol. 2014, 5, 168.10.4172/2157-7609.1000168. PubMed DOI PMC
Kurz J. L.; Farrar J. M. Entropies of Dissociation of Some Moderately Strong Acids. J. Am. Chem. Soc. 1969, 91, 6057–6062. 10.1021/ja01050a021. DOI
Skultetyova L.; Ustinova K.; Kutil Z.; Novakova Z.; Pavlicek J.; Mikesova J.; Trapl D.; Baranova P.; Havlinova B.; Hubalek M.; Lansky Z.; Barinka C. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci. Rep. 2017, 7, 1154710.1038/s41598-017-11739-3. PubMed DOI PMC
Shen S.; Svoboda M.; Zhang G.; Cavasin M. A.; Motlova L.; McKinsey T. A.; Eubanks J. H.; Barinka C.; Kozikowski A. P. Structural and in Vivo Characterization of Tubastatin A, a Widely Used Histone Deacetylase 6 Inhibitor. ACS Med. Chem. Lett. 2020, 11, 706–712. 10.1021/acsmedchemlett.9b00560. PubMed DOI PMC
Kutil Z.; Mikesova J.; Zessin M.; Meleshin M.; Novakova Z.; Alquicer G.; Kozikowski A.; Sippl W.; Barinka C.; Schutkowski M. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS Omega 2019, 4, 19895–19904. 10.1021/acsomega.9b02808. PubMed DOI PMC
Elegheert J.; Behiels E.; Bishop B.; Scott S.; Woolley R. E.; Griffiths S. C.; Byrne E. F. X.; Chang V. T.; Stuart D. I.; Jones E. Y.; Siebold C.; Aricescu A. R. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 2018, 13, 2991–3017. 10.1038/s41596-018-0075-9. PubMed DOI PMC
Kovalevskiy O.; Nicholls R. A.; Long F.; Carlon A.; Murshudov G. N. Overview of refinement procedures within REFMAC5: utilizing data from different sources. Acta Crystallogr., Sect. D: Struct. Biol. 2018, 74, 215–227. 10.1107/S2059798318000979. PubMed DOI PMC
Emsley P.; Lohkamp B.; Scott W. G.; Cowtan K. Features and development of Coot. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 486–501. 10.1107/S0907444910007493. PubMed DOI PMC
Long F.; Nicholls R. A.; Emsley P.; Graaeulis S.; Merkys A.; Vaitkus A.; Murshudov G. N. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr., Sect. D: Struct. Biol. 2017, 73, 112–122. 10.1107/S2059798317000067. PubMed DOI PMC
Gore S.; Sanz Garcia E.; Hendrickx P. M. S.; Gutmanas A.; Westbrook J. D.; Yang H.; Feng Z.; Baskaran K.; Berrisford J. M.; Hudson B. P.; Ikegawa Y.; Kobayashi N.; Lawson C. L.; Mading S.; Mak L.; Mukhopadhyay A.; Oldfield T. J.; Patwardhan A.; Peisach E.; Sahni G.; Sekharan M. R.; Sen S.; Shao C.; Smart O. S.; Ulrich E. L.; Yamashita R.; Quesada M.; Young J. Y.; Nakamura H.; Markley J. L.; Berman H. M.; Burley S. K.; Velankar S.; Kleywegt G. J. Validation of Structures in the Protein Data Bank. Structure 2017, 25, 1916–1927. 10.1016/j.str.2017.10.009. PubMed DOI PMC
Bim D.; Chalupsky J.; Culka M.; Solomon E. I.; Rulisek L.; Srnec M. Proton-Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Delta(9)-Desaturase. J. Am. Chem. Soc. 2020, 142, 10412–10423. 10.1021/jacs.0c01786. PubMed DOI PMC
Kipouros I.; Stanczak A.; Ginsbach J. W.; Andrikopoulos P. C.; Rulisek L.; Solomon E. I. Elucidation of the tyrosinase/O-2/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e220561911910.1073/pnas.2205619119. PubMed DOI PMC
Rulíšek L.; Ryde U. Theoretical studies of the active-site structure, spectroscopic and thermodynamic properties, and reaction mechanism of multicopper oxidases. Coord. Chem. Rev. 2013, 257, 445–458. 10.1016/j.ccr.2012.04.019. DOI
Ponder J. W.; Case D. A. Force fields for protein simulations. Adv. Protein Chem. 2003, 66, 27–85. 10.1016/S0065-3233(03)66002-X. PubMed DOI
Cao L. L.; Ryde U. On the Difference Between Additive and Subtractive QM/MM Calculations. Front. Chem. 2018, 6, 89.10.3389/fchem.2018.00089. PubMed DOI PMC
Rokob T. A.; Rulisek L. Curvature Correction for Microiterative Optimizations with QM/MM Electronic Embedding. J. Comput. Chem. 2012, 33, 1197–1206. 10.1002/jcc.22951. PubMed DOI
Ryde U. The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations. J. Comput.-Aided Mol. Des. 1996, 10, 153–164. 10.1007/BF00402823. PubMed DOI
Ryde U.; Olsson M. H. M. Structure, strain, and reorganization energy of blue copper models in the protein. Int. J. Quantum Chem. 2001, 81, 335–347. 10.1002/1097-461X(2001)81:5<335::AID-QUA1003>3.0.CO;2-Q. DOI
Ahlrichs R.; Bar M.; Haser M.; Horn H.; Kolmel C. Electronic-Structure Calculations on Workstation Computers—the Program System Turbomole. Chem. Phys. Lett. 1989, 162, 165–169. 10.1016/0009-2614(89)85118-8. DOI
Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI
Godbout N.; Salahub D. R.; Andzelm J.; Wimmer E. Optimization of Gaussian-Type Basis-Sets for Local Spin-Density Functional Calculations. 1. Boron through Neon, Optimization Technique and Validation. Can. J. Chem. 1992, 70, 560–571. 10.1139/v92-079. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI
Eichkorn K.; Treutler O.; Ohm H.; Haser M.; Ahlrichs R. Auxiliary Basis-Sets to Approximate Coulomb Potentials. Chem. Phys. Lett. 1995, 240, 283–289. 10.1016/0009-2614(95)00621-A. DOI
Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K. E.; Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Tao J.; Perdew J. P.; Staroverov V. N.; Scuseria G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003, 91, 14640110.1103/PhysRevLett.91.146401. PubMed DOI
Eichkorn K.; Treutler O.; Ohm H.; Haser M.; Ahlrichs R. Auxiliary Basis-Sets to Approximate Coulomb Potentials (Vol 240, Pg 283, 1995). Chem. Phys. Lett. 1995, 242, 652–660. 10.1016/0009-2614(95)00838-U. DOI
Klamt A.; Schuurmann G. Cosmo—a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, 799–805. 10.1039/P29930000799. DOI
Eckert F.; Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 2002, 48, 369–385. 10.1002/aic.690480220. DOI
Klamt A.; Jonas V.; Burger T.; Lohrenz J. C. W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074–5085. 10.1021/jp980017s. DOI
Grimme S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem. - Eur. J. 2012, 18, 9955–9964. 10.1002/chem.201200497. PubMed DOI
Bursch M.; Mewes J. M.; Hansen A.; Grimme S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem., Int. Ed. 2022, 61, e20220573510.1002/anie.202205735. PubMed DOI PMC
Gutten O.; Bim D.; Rezac J.; Rulisek L. Macrocycle Conformational Sampling by DFT-D3/COSMO-RS Methodology. J. Chem. Inf. Model. 2018, 58, 48–60. 10.1021/acs.jcim.7b00453. PubMed DOI
Spicher S.; Grimme S. Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. J. Chem. Theory Comput. 2021, 17, 1701–1714. 10.1021/acs.jctc.0c01306. PubMed DOI
Gutten O.; Rulisek L. Predicting the stability constants of metal-ion complexes from first principles. Inorg. Chem. 2013, 52, 10347–10355. 10.1021/ic401037x. PubMed DOI
Mohammed T. A.; Meier C. M.; Kalvoda T.; Kalt M.; Rulisek L.; Shoshan M. S. Potent Cyclic Tetrapeptide for Lead Detoxification. Angew. Chem., Int. Ed. 2021, 60, 12381–12385. 10.1002/anie.202103217. PubMed DOI
Tomaník L.; Rulisek L.; Slavicek P. Redox Potentials with COSMO-RS: Systematic Benchmarking with Different Databases. J. Chem. Theory Comput. 2023, 19, 1014–1022. 10.1021/acs.jctc.2c00919. PubMed DOI