Comprehensive Mechanistic View of the Hydrolysis of Oxadiazole-Based Inhibitors by Histone Deacetylase 6 (HDAC6)

. 2023 Jul 21 ; 18 (7) : 1594-1610. [epub] 20230701

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37392419

Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform. Surprisingly, but in line with a very recent finding reported in the literature, a crystal structure of the HDAC6/inhibitor complex revealed that hydrolysis of the oxadiazole ring transforms the parent oxadiazole into an acylhydrazide through a sequence of two hydrolytic steps. An identical cleavage pattern was also observed both in vitro using the purified HDAC6 enzyme as well as in cellular systems. By employing advanced quantum and molecular mechanics (QM/MM) and QM calculations, we elucidated the mechanistic details of the two hydrolytic steps to obtain a comprehensive mechanistic view of the double hydrolysis of the oxadiazole ring. This was achieved by fully characterizing the reaction coordinate, including identification of the structures of all intermediates and transition states, together with calculations of their respective activation (free) energies. In addition, we ruled out several (intuitively) competing pathways. The computed data (ΔG‡ ≈ 21 kcal·mol-1 for the rate-determining step of the overall dual hydrolysis) are in very good agreement with the experimentally determined rate constants, which a posteriori supports the proposed reaction mechanism. We also clearly (and quantitatively) explain the role of the -CF3 or -CHF2 substituent on the oxadiazole ring, which is a prerequisite for hydrolysis to occur. Overall, our data provide compelling evidence that the oxadiazole warheads can be efficiently transformed within the active sites of target metallohydrolases to afford reaction products possessing distinct selectivity and inhibition profiles.

Zobrazit více v PubMed

Li G.; Tian Y.; Zhu W.-G. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front. Cell Dev. Biol. 2020, 8, 57694610.3389/fcell.2020.576946. PubMed DOI PMC

Milazzo G.; Mercatelli D.; Di Muzio G.; Triboli L.; De Rosa P.; Perini G.; Giorgi F. M. Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes 2020, 11, 556.10.3390/genes11050556. PubMed DOI PMC

Shen S.; Kozikowski A. P. A patent review of histone deacetylase 6 inhibitors in neurodegenerative diseases (2014-2019). Expert Opin. Ther. Pat. 2020, 30, 121–136. 10.1080/13543776.2019.1708901. PubMed DOI PMC

Zhang X.-H.; Qin M.; Wu H.-P.; Khamis M. Y.; Li Y.-H.; Ma L.-Y.; Liu H.-M. A Review of Progress in Histone Deacetylase 6 Inhibitors Research: Structural Specificity and Functional Diversity. J. Med. Chem. 2021, 64, 1362–1391. 10.1021/acs.jmedchem.0c01782. PubMed DOI

Lechner S.; Malgapo M. I. P.; Gratz C.; Steimbach R. R.; Baron A.; Ruther P.; Nadal S.; Stumpf C.; Loos C.; Ku X.; Prokofeva P.; Lautenbacher L.; Heimburg T.; Wurf V.; Meng C.; Wilhelm M.; Sippl W.; Kleigrewe K.; Pauling J. K.; Kramer K.; Miller A. K.; Pfaffl M. W.; Linder M. E.; Kuster B.; Medard G. Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nat. Chem. Biol. 2022, 18, 812–820. 10.1038/s41589-022-01015-5. PubMed DOI PMC

Lee M. S.; Isobe M. Metabolic activation of the potent mutagen, 2-naphthohydroxamic acid, in Salmonella typhimurium TA98. Cancer Res. 1990, 50, 4300–4307. PubMed

Shen S.; Kozikowski A. P. Why Hydroxamates May Not Be the Best Histone Deacetylase Inhibitors--What Some May Have Forgotten or Would Rather Forget?. ChemMedChem 2016, 11, 15–21. 10.1002/cmdc.201500486. PubMed DOI PMC

Summers J. B.; Gunn B. P.; Mazdiyasni H.; Goetze A. M.; Young P. R.; Bouska J. B.; Dyer R. D.; Brooks D. W.; Carter G. W. In vivo characterization of hydroxamic acid inhibitors of 5-lipoxygenase. J. Med. Chem. 1987, 30, 2121–2126. 10.1021/jm00394a032. PubMed DOI

Frühauf A.; Meyer-Almes F. J. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules 2021, 26, 5151.10.3390/molecules26175151. PubMed DOI PMC

Ho T. C. S.; Chan A. H. Y.; Ganesan A. Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. J. Med. Chem. 2020, 63, 12460–12484. 10.1021/acs.jmedchem.0c00830. PubMed DOI

Melesina J.; Simoben C. V.; Praetorius L.; Bulbul E. F.; Robaa D.; Sippl W. Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem 2021, 16, 1336–1359. 10.1002/cmdc.202000934. PubMed DOI

Porter N. J.; Shen S.; Barinka C.; Kozikowski A. P.; Christianson D. W. Molecular Basis for the Selective Inhibition of Histone Deacetylase 6 by a Mercaptoacetamide Inhibitor. ACS Med. Chem. Lett. 2018, 9, 1301–1305. 10.1021/acsmedchemlett.8b00487. PubMed DOI PMC

Guerriero J. L.; Sotayo A.; Ponichtera H. E.; Castrillon J. A.; Pourzia A. L.; Schad S.; Johnson S. F.; Carrasco R. D.; Lazo S.; Bronson R. T.; Davis S. P.; Lobera M.; Nolan M. A.; Letai A. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 2017, 543, 428–432. 10.1038/nature21409. PubMed DOI PMC

Keuler T.; Konig B.; Buckreiss N.; Kraft F. B.; Konig P.; Schaker-Hubner L.; Steinebach C.; Bendas G.; Gutschow M.; Hansen F. K. Development of the first non-hydroxamate selective HDAC6 degraders. Chem. Commun. 2022, 58, 11087–11090. 10.1039/D2CC03712B. PubMed DOI

Lobera M.; Madauss K. P.; Pohlhaus D. T.; Wright Q. G.; Trocha M.; Schmidt D. R.; Baloglu E.; Trump R. P.; Head M. S.; Hofmann G. A.; Murray-Thompson M.; Schwartz B.; Chakravorty S.; Wu Z.; Mander P. K.; Kruidenier L.; Reid R. A.; Burkhart W.; Turunen B. J.; Rong J. X.; Wagner C.; Moyer M. B.; Wells C.; Hong X.; Moore J. T.; Williams J. D.; Soler D.; Ghosh S.; Nolan M. A. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol. 2013, 9, 319–325. 10.1038/nchembio.1223. PubMed DOI

Hai Y.; Christianson D. W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 2016, 12, 741–747. 10.1038/nchembio.2134. PubMed DOI PMC

Miyake Y.; Keusch J. J.; Wang L.; Saito M.; Hess D.; Wang X.; Melancon B. J.; Helquist P.; Gut H.; Matthias P. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol. 2016, 12, 748–754. 10.1038/nchembio.2140. PubMed DOI

Pulya S.; Amin S. A.; Adhikari N.; Biswas S.; Jha T.; Ghosh B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol. Res. 2021, 163, 10527410.1016/j.phrs.2020.105274. PubMed DOI

Shukla S.; Komarek J.; Novakova Z.; Nedvedova J.; Ustinova K.; Vankova P.; Kadek A.; Uetrecht C.; Mertens H.; Barinka C. In-solution structure and oligomerization of human histone deacetylase 6—an integrative approach. FEBS J. 2023, 290, 821–836. 10.1111/febs.16616. PubMed DOI

Prejano M.; Vidossich P.; Russo N.; De Vivo M.; Marino T. Insights into the Catalytic Mechanism of Domains CD1 and CD2 in Histone Deacetylase 6 from Quantum Calculations. ACS Catal. 2021, 11, 3084–3093. 10.1021/acscatal.0c04729. DOI

Navrátil V.; Klusak V.; Rulisek L. Theoretical Aspects of Hydrolysis of Peptide Bonds by Zinc Metalloenzymes. Chem. - Eur. J. 2013, 19, 16634–16645. 10.1002/chem.201302663. PubMed DOI

Bím D.; Navratil M.; Gutten O.; Konvalinka J.; Kutil Z.; Culka M.; Navratil V.; Alexandrova A. N.; Barinka C.; Rulisek L. Predicting Effects of Site-Directed Mutagenesis on Enzyme Kinetics by QM/MM and QM Calculations: A Case of Glutamate Carboxypeptidase II. J. Phys. Chem. B 2022, 126, 132–143. 10.1021/acs.jpcb.1c09240. PubMed DOI

Klusák V.; Barinka C.; Plechanovova A.; Mlcochova P.; Konvalinka J.; Rulisek L.; Lubkowski J. Reaction Mechanism of Glutamate Carboxypeptidase II Revealed by Mutagenesis, X-ray Crystallography, and Computational Methods. Biochemistry 2009, 48, 4126–4138. 10.1021/bi900220s. PubMed DOI PMC

Cellupica E.; Caprini G.; Cordella P.; Cukier C.; Fossati G.; Marchini M.; Rocchio I.; Sandrone G.; Vanoni M. A.; Vergani B.; Zrubek K.; Stevenazzi A.; Steinkuhler C. Difluoromethyl-1,3,4-oxadiazoles are slow-binding substrate analog inhibitors of histone deacetylase 6 with unprecedented isotype selectivity. J. Biol. Chem. 2022, 299, 10280010.1016/j.jbc.2022.102800. PubMed DOI PMC

Becke A. D. Density-Functional Thermochemistry. 3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI

Porter N. J.; Christianson D. W. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr. Opin. Struct. Biol. 2019, 59, 9–18. 10.1016/j.sbi.2019.01.004. PubMed DOI PMC

Wu R.; Wang S.; Zhou N.; Cao Z.; Zhang Y. A Proton-Shuttle Reaction Mechanism for Histone Deacetylase 8 and the Catalytic Role of Metal Ions. J. Am. Chem. Soc. 2010, 132, 9471–9479. 10.1021/ja103932d. PubMed DOI PMC

Kipouros I.; Stanczak A.; Culka M.; Andris E.; Machonkin T. R.; Rulisek L.; Solomon E. I. Evidence for H-bonding interactions to the mu-eta(2):eta(2)-peroxide of oxy-tyrosinase that activate its coupled binuclear copper site. Chem. Commun. 2022, 58, 3913–3916. 10.1039/D2CC00750A. PubMed DOI PMC

Jiang Y.; Xu J.; Yue K.; Huang C.; Qin M.; Chi D.; Yu Q.; Zhu Y.; Hou X.; Xu T.; Li M.; Chou C. J.; Li X. Potent Hydrazide-Based HDAC Inhibitors with a Superior Pharmacokinetic Profile for Efficient Treatment of Acute Myeloid Leukemia In Vivo. J. Med. Chem. 2022, 65, 285–302. 10.1021/acs.jmedchem.1c01472. PubMed DOI

Sun P.; Wang J.; Khan K. S.; Yang W.; Ng B. W.; Ilment N.; Zessin M.; Bulbul E. F.; Robaa D.; Erdmann F.; Schmidt M.; Romier C.; Schutkowski M.; Cheng A. S.; Sippl W. Development of Alkylated Hydrazides as Highly Potent and Selective Class I Histone Deacetylase Inhibitors with T cell Modulatory Properties. J. Med. Chem. 2022, 65, 16313–16337. 10.1021/acs.jmedchem.2c01132. PubMed DOI

Wang Y.; Stowe R. L.; Pinello C. E.; Tian G.; Madoux F.; Li D.; Zhao L. Y.; Li J. L.; Wang Y.; Wang Y.; Ma H.; Hodder P.; Roush W. R.; Liao D. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem. Biol. 2015, 22, 273–284. 10.1016/j.chembiol.2014.12.015. PubMed DOI PMC

Ptacek J.; Snajdr I.; Schimer J.; Kutil Z.; Mikesova J.; Baranova P.; Havlinova B.; Tueckmantel W.; Majer P.; Kozikowski A.; Barinka C. Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells. Int. J. Mol. Sci. 2023, 24, 4720.10.3390/ijms24054720. PubMed DOI PMC

Biernacki K.; Dasko M.; Ciupak O.; Kubinski K.; Rachon J.; Demkowicz S. Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals 2020, 13, 111.10.3390/ph13060111. PubMed DOI PMC

Maciolek C. M.; Ma B.; Menzel K.; Laliberte S.; Bateman K.; Krolikowski P.; Gibson C. R. Novel cytochrome P450-mediated ring opening of the 1,3,4-oxadiazole in setileuton, a 5-lipoxygenase inhibitor. Drug Metab. Dispos. 2011, 39, 763–770. 10.1124/dmd.110.037366. PubMed DOI

Sinha B. K.; Mason R. P. Biotransformation of Hydrazine Dervatives in the Mechanism of Toxicity. J. Drug Metab. Toxicol. 2014, 5, 168.10.4172/2157-7609.1000168. PubMed DOI PMC

Kurz J. L.; Farrar J. M. Entropies of Dissociation of Some Moderately Strong Acids. J. Am. Chem. Soc. 1969, 91, 6057–6062. 10.1021/ja01050a021. DOI

Skultetyova L.; Ustinova K.; Kutil Z.; Novakova Z.; Pavlicek J.; Mikesova J.; Trapl D.; Baranova P.; Havlinova B.; Hubalek M.; Lansky Z.; Barinka C. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci. Rep. 2017, 7, 1154710.1038/s41598-017-11739-3. PubMed DOI PMC

Shen S.; Svoboda M.; Zhang G.; Cavasin M. A.; Motlova L.; McKinsey T. A.; Eubanks J. H.; Barinka C.; Kozikowski A. P. Structural and in Vivo Characterization of Tubastatin A, a Widely Used Histone Deacetylase 6 Inhibitor. ACS Med. Chem. Lett. 2020, 11, 706–712. 10.1021/acsmedchemlett.9b00560. PubMed DOI PMC

Kutil Z.; Mikesova J.; Zessin M.; Meleshin M.; Novakova Z.; Alquicer G.; Kozikowski A.; Sippl W.; Barinka C.; Schutkowski M. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS Omega 2019, 4, 19895–19904. 10.1021/acsomega.9b02808. PubMed DOI PMC

Elegheert J.; Behiels E.; Bishop B.; Scott S.; Woolley R. E.; Griffiths S. C.; Byrne E. F. X.; Chang V. T.; Stuart D. I.; Jones E. Y.; Siebold C.; Aricescu A. R. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 2018, 13, 2991–3017. 10.1038/s41596-018-0075-9. PubMed DOI PMC

Kovalevskiy O.; Nicholls R. A.; Long F.; Carlon A.; Murshudov G. N. Overview of refinement procedures within REFMAC5: utilizing data from different sources. Acta Crystallogr., Sect. D: Struct. Biol. 2018, 74, 215–227. 10.1107/S2059798318000979. PubMed DOI PMC

Emsley P.; Lohkamp B.; Scott W. G.; Cowtan K. Features and development of Coot. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 486–501. 10.1107/S0907444910007493. PubMed DOI PMC

Long F.; Nicholls R. A.; Emsley P.; Graaeulis S.; Merkys A.; Vaitkus A.; Murshudov G. N. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr., Sect. D: Struct. Biol. 2017, 73, 112–122. 10.1107/S2059798317000067. PubMed DOI PMC

Gore S.; Sanz Garcia E.; Hendrickx P. M. S.; Gutmanas A.; Westbrook J. D.; Yang H.; Feng Z.; Baskaran K.; Berrisford J. M.; Hudson B. P.; Ikegawa Y.; Kobayashi N.; Lawson C. L.; Mading S.; Mak L.; Mukhopadhyay A.; Oldfield T. J.; Patwardhan A.; Peisach E.; Sahni G.; Sekharan M. R.; Sen S.; Shao C.; Smart O. S.; Ulrich E. L.; Yamashita R.; Quesada M.; Young J. Y.; Nakamura H.; Markley J. L.; Berman H. M.; Burley S. K.; Velankar S.; Kleywegt G. J. Validation of Structures in the Protein Data Bank. Structure 2017, 25, 1916–1927. 10.1016/j.str.2017.10.009. PubMed DOI PMC

Bim D.; Chalupsky J.; Culka M.; Solomon E. I.; Rulisek L.; Srnec M. Proton-Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Delta(9)-Desaturase. J. Am. Chem. Soc. 2020, 142, 10412–10423. 10.1021/jacs.0c01786. PubMed DOI PMC

Kipouros I.; Stanczak A.; Ginsbach J. W.; Andrikopoulos P. C.; Rulisek L.; Solomon E. I. Elucidation of the tyrosinase/O-2/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e220561911910.1073/pnas.2205619119. PubMed DOI PMC

Rulíšek L.; Ryde U. Theoretical studies of the active-site structure, spectroscopic and thermodynamic properties, and reaction mechanism of multicopper oxidases. Coord. Chem. Rev. 2013, 257, 445–458. 10.1016/j.ccr.2012.04.019. DOI

Ponder J. W.; Case D. A. Force fields for protein simulations. Adv. Protein Chem. 2003, 66, 27–85. 10.1016/S0065-3233(03)66002-X. PubMed DOI

Cao L. L.; Ryde U. On the Difference Between Additive and Subtractive QM/MM Calculations. Front. Chem. 2018, 6, 89.10.3389/fchem.2018.00089. PubMed DOI PMC

Rokob T. A.; Rulisek L. Curvature Correction for Microiterative Optimizations with QM/MM Electronic Embedding. J. Comput. Chem. 2012, 33, 1197–1206. 10.1002/jcc.22951. PubMed DOI

Ryde U. The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations. J. Comput.-Aided Mol. Des. 1996, 10, 153–164. 10.1007/BF00402823. PubMed DOI

Ryde U.; Olsson M. H. M. Structure, strain, and reorganization energy of blue copper models in the protein. Int. J. Quantum Chem. 2001, 81, 335–347. 10.1002/1097-461X(2001)81:5<335::AID-QUA1003>3.0.CO;2-Q. DOI

Ahlrichs R.; Bar M.; Haser M.; Horn H.; Kolmel C. Electronic-Structure Calculations on Workstation Computers—the Program System Turbomole. Chem. Phys. Lett. 1989, 162, 165–169. 10.1016/0009-2614(89)85118-8. DOI

Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI

Godbout N.; Salahub D. R.; Andzelm J.; Wimmer E. Optimization of Gaussian-Type Basis-Sets for Local Spin-Density Functional Calculations. 1. Boron through Neon, Optimization Technique and Validation. Can. J. Chem. 1992, 70, 560–571. 10.1139/v92-079. DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI

Eichkorn K.; Treutler O.; Ohm H.; Haser M.; Ahlrichs R. Auxiliary Basis-Sets to Approximate Coulomb Potentials. Chem. Phys. Lett. 1995, 240, 283–289. 10.1016/0009-2614(95)00621-A. DOI

Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K. E.; Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Tao J.; Perdew J. P.; Staroverov V. N.; Scuseria G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003, 91, 14640110.1103/PhysRevLett.91.146401. PubMed DOI

Eichkorn K.; Treutler O.; Ohm H.; Haser M.; Ahlrichs R. Auxiliary Basis-Sets to Approximate Coulomb Potentials (Vol 240, Pg 283, 1995). Chem. Phys. Lett. 1995, 242, 652–660. 10.1016/0009-2614(95)00838-U. DOI

Klamt A.; Schuurmann G. Cosmo—a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, 799–805. 10.1039/P29930000799. DOI

Eckert F.; Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 2002, 48, 369–385. 10.1002/aic.690480220. DOI

Klamt A.; Jonas V.; Burger T.; Lohrenz J. C. W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074–5085. 10.1021/jp980017s. DOI

Grimme S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem. - Eur. J. 2012, 18, 9955–9964. 10.1002/chem.201200497. PubMed DOI

Bursch M.; Mewes J. M.; Hansen A.; Grimme S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem., Int. Ed. 2022, 61, e20220573510.1002/anie.202205735. PubMed DOI PMC

Gutten O.; Bim D.; Rezac J.; Rulisek L. Macrocycle Conformational Sampling by DFT-D3/COSMO-RS Methodology. J. Chem. Inf. Model. 2018, 58, 48–60. 10.1021/acs.jcim.7b00453. PubMed DOI

Spicher S.; Grimme S. Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. J. Chem. Theory Comput. 2021, 17, 1701–1714. 10.1021/acs.jctc.0c01306. PubMed DOI

Gutten O.; Rulisek L. Predicting the stability constants of metal-ion complexes from first principles. Inorg. Chem. 2013, 52, 10347–10355. 10.1021/ic401037x. PubMed DOI

Mohammed T. A.; Meier C. M.; Kalvoda T.; Kalt M.; Rulisek L.; Shoshan M. S. Potent Cyclic Tetrapeptide for Lead Detoxification. Angew. Chem., Int. Ed. 2021, 60, 12381–12385. 10.1002/anie.202103217. PubMed DOI

Tomaník L.; Rulisek L.; Slavicek P. Redox Potentials with COSMO-RS: Systematic Benchmarking with Different Databases. J. Chem. Theory Comput. 2023, 19, 1014–1022. 10.1021/acs.jctc.2c00919. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...