Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells

. 2023 Mar 01 ; 24 (5) : . [epub] 20230301

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36902164

Grantová podpora
5R01CA249248-02 NIH HHS - United States
R01 CA249248 NCI NIH HHS - United States

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.

Zobrazit více v PubMed

De Ruijter A.J., van Gennip A.H., Caron H.N., Kemp S., van Kuilenburg A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 2003;370:737–749. doi: 10.1042/bj20021321. PubMed DOI PMC

Boyault C., Sadoul K., Pabion M., Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene. 2007;26:5468–5476. doi: 10.1038/sj.onc.1210614. PubMed DOI

Matthias P., Yoshida M., Khochbin S. HDAC6 a new cellular stress surveillance factor. Cell Cycle. 2008;7:7–10. doi: 10.4161/cc.7.1.5186. PubMed DOI

Perdiz D., Mackeh R., Pous C., Baillet A. The ins and outs of tubulin acetylation: More than just a post-translational modification? Cell. Signal. 2011;23:763–771. doi: 10.1016/j.cellsig.2010.10.014. PubMed DOI

Arce C.A., Casale C.H., Barra H.S. Submembraneous microtubule cytoskeleton: Regulation of ATPases by interaction with acetylated tubulin. FEBS J. 2008;275:4664–4674. doi: 10.1111/j.1742-4658.2008.06615.x. PubMed DOI

Hammond J.W., Huang C.F., Kaech S., Jacobson C., Banker G., Verhey K.J. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell. 2010;21:572–583. doi: 10.1091/mbc.e09-01-0044. PubMed DOI PMC

Hirokawa N., Niwa S., Tanaka Y. Molecular motors in neurons: Transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68:610–638. doi: 10.1016/j.neuron.2010.09.039. PubMed DOI

Gardiner J., Barton D., Marc J., Overall R. Potential role of tubulin acetylation and microtubule-based protein trafficking in familial dysautonomia. Traffic. 2007;8:1145–1149. doi: 10.1111/j.1600-0854.2007.00605.x. PubMed DOI

Liu X.A., Rizzo V., Puthanveettil S.V. Pathologies of Axonal Transport in Neurodegenerative Diseases. Transl. Neurosci. 2012;3:355–372. doi: 10.2478/s13380-012-0044-7. PubMed DOI PMC

Jochems J., Boulden J., Lee B.G., Blendy J.A., Jarpe M., Mazitschek R., Van Duzer J.H., Jones S., Berton O. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology. 2014;39:389–400. doi: 10.1038/npp.2013.207. PubMed DOI PMC

Wang Z., Leng Y., Wang J., Liao H.M., Bergman J., Leeds P., Kozikowski A., Chuang D.M. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: Potential roles of alpha-tubulin acetylation and FGF-21 up-regulation. Sci. Rep. 2016;6:19626. doi: 10.1038/srep19626. PubMed DOI PMC

Pinho B.R., Reis S.D., Guedes-Dias P., Leitao-Rocha A., Quintas C., Valentao P., Andrade P.B., Santos M.M., Oliveira J.M. Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson’s disease. Pharmacol. Res. 2016;103:328–339. doi: 10.1016/j.phrs.2015.11.024. PubMed DOI

Zhang L., Liu C., Wu J., Tao J.J., Sui X.L., Yao Z.G., Xu Y.F., Huang L., Zhu H., Sheng S.L., et al. Tubastatin A/ACY-1215 improves cognition in Alzheimer’s disease transgenic mice. J. Alzheimer’s Dis. JAD. 2014;41:1193–1205. doi: 10.3233/JAD-140066. PubMed DOI

Zhang L., Sheng S., Qin C. The role of HDAC6 in Alzheimer’s disease. J. Alzheimer’s Dis. JAD. 2013;33:283–295. doi: 10.3233/JAD-2012-120727. PubMed DOI

Selenica M.L., Benner L., Housley S.B., Manchec B., Lee D.C., Nash K.R., Kalin J., Bergman J.A., Kozikowski A., Gordon M.N., et al. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimer’s Res. Ther. 2014;6:12. doi: 10.1186/alzrt241. PubMed DOI PMC

d’Ydewalle C., Krishnan J., Chiheb D.M., Van Damme P., Irobi J., Kozikowski A.P., Vanden Berghe P., Timmerman V., Robberecht W., Van Den Bosch L. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med. 2011;17:968–974. doi: 10.1038/nm.2396. PubMed DOI

Kim J.Y., Woo S.Y., Hong Y.B., Choi H., Kim J., Choi H., Mook-Jung I., Ha N., Kyung J., Koo S.K., et al. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation. Stem Cells Int. 2016;2016:9475981. doi: 10.1155/2016/9475981. PubMed DOI PMC

Gold W.A., Lacina T.A., Cantrill L.C., Christodoulou J. MeCP2 deficiency is associated with reduced levels of tubulin acetylation and can be restored using HDAC6 inhibitors. J. Mol. Med. 2015;93:63–72. doi: 10.1007/s00109-014-1202-x. PubMed DOI

Guo W., Naujock M., Fumagalli L., Vandoorne T., Baatsen P., Boon R., Ordovas L., Patel A., Welters M., Vanwelden T., et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat. Commun. 2017;8:861. doi: 10.1038/s41467-017-00911-y. PubMed DOI PMC

Kozikowski A.P., Shen S., Pardo M., Tavares M.T., Szarics D., Benoy V., Zimprich C.A., Kutil Z., Zhang G., Barinka C., et al. Brain Penetrable Histone Deacetylase 6 Inhibitor SW-100 Ameliorates Memory and Learning Impairments in a Mouse Model of Fragile X Syndrome. ACS Chem. Neurosci. 2019;10:1679–1695. doi: 10.1021/acschemneuro.8b00600. PubMed DOI PMC

Langley B., D’Annibale M.A., Suh K., Ayoub I., Tolhurst A., Bastan B., Yang L., Ko B., Fisher M., Cho S., et al. Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/cip1) in cell cycle-independent neuroprotection. J. Neurosci. 2008;28:163–176. doi: 10.1523/JNEUROSCI.3200-07.2008. PubMed DOI PMC

Rivieccio M.A., Brochier C., Willis D.E., Walker B.A., D’Annibale M.A., McLaughlin K., Siddiq A., Kozikowski A.P., Jaffrey S.R., Twiss J.L., et al. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc. Natl. Acad. Sci. USA. 2009;106:19599–19604. doi: 10.1073/pnas.0907935106. PubMed DOI PMC

Wang X.X., Wan R.Z., Liu Z.P. Recent advances in the discovery of potent and selective HDAC6 inhibitors. Eur. J. Med. Chem. 2018;143:1406–1418. doi: 10.1016/j.ejmech.2017.10.040. PubMed DOI

Santo L., Hideshima T., Kung A.L., Tseng J.C., Tamang D., Yang M., Jarpe M., van Duzer J.H., Mazitschek R., Ogier W.C., et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012;119:2579–2589. doi: 10.1182/blood-2011-10-387365. PubMed DOI PMC

Yee A.J., Bensinger W.I., Supko J.G., Voorhees P.M., Berdeja J.G., Richardson P.G., Libby E.N., Wallace E.E., Birrer N.E., Burke J.N., et al. Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: A multicentre phase 1b trial. Lancet Oncol. 2016;17:1569–1578. doi: 10.1016/S1470-2045(16)30375-8. PubMed DOI

Clinical Trials for ACY-1215. [(accessed on 28 September 2017)]; Available online: https://clinicaltrials.gov/ct2/results?term=ACY-1215&Search=Search.

Clinical Trials for ACY-241. [(accessed on 28 September 2017)]; Available online: https://clinicaltrials.gov/ct2/results?term=ACY-241&Search=Search.

Lechner S., Malgapo M.I.P., Gratz C., Steimbach R.R., Baron A., Ruther P., Nadal S., Stumpf C., Loos C., Ku X., et al. Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nat. Chem. Biol. 2022;18:812–820. doi: 10.1038/s41589-022-01015-5. PubMed DOI PMC

Liang Y.Y., Zhang C.M., Liu Z.P. Evaluation of WO2017018805: 1,3,4-oxadiazole sulfamide derivatives as selective HDAC6 inhibitors. Expert Opin. Ther. Pat. 2018;28:647–651. doi: 10.1080/13543776.2018.1508451. PubMed DOI

Cellupica E., Caprini G., Cordella P., Cukier C., Fossati G., Marchini M., Rocchio I., Sandrone G., Vanoni M.A., Vergani B., et al. Difluoromethyl-1,3,4-oxadiazoles are slow-binding substrate analog inhibitors of histone deacetylase 6 with unprecedented isotype selectivity. J. Biol. Chem. 2022;299:102800. doi: 10.1016/j.jbc.2022.102800. PubMed DOI PMC

Shen S., Kozikowski A.P. A patent review of histone deacetylase 6 inhibitors in neurodegenerative diseases (2014–2019) Expert Opin. Ther. Pat. 2020;30:121–136. doi: 10.1080/13543776.2019.1708901. PubMed DOI PMC

Tan B.Y.H., Teo Y.C., Seow A.H. Low Catalyst Loadings for Ligand-Free Copper(I)-Oxide-Catalyzed N-Arylation of Methanesulfonamide in Water. Eur. J. Org. Chem. 2014;2014:1541–1546. doi: 10.1002/ejoc.201301561. DOI

Humphreys K.J., Karlin K.D., Rokita S.E. Efficient and specific strand scission of DNA by a dinuclear copper complex: Comparative reactivity of complexes with linked tris(2-pyridylmethyl)amine moieties. J. Am. Chem. Soc. 2002;124:6009–6019. doi: 10.1021/ja020039z. PubMed DOI

Skultetyova L., Ustinova K., Kutil Z., Novakova Z., Pavlicek J., Mikesova J., Trapl D., Baranova P., Havlinova B., Hubalek M., et al. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci. Rep. 2017;7:11547. doi: 10.1038/s41598-017-11739-3. PubMed DOI PMC

Noonepalle S., Shen S., Ptacek J., Tavares M.T., Zhang G., Stransky J., Pavlicek J., Ferreira G.M., Hadley M., Pelaez G., et al. Rational Design of Suprastat: A Novel Selective Histone Deacetylase 6 Inhibitor with the Ability to Potentiate Immunotherapy in Melanoma Models. J. Med. Chem. 2020;63:10246–10262. doi: 10.1021/acs.jmedchem.0c00567. PubMed DOI

Mikesova J., Ondrakova M., Jelinkova I., Ptacek J., Novakova Z., Barinka C. Determining Potency of Inhibitors Targeting Histone Deacetylase 6 by Quantification of Acetylated Tubulin in Cells. Methods Mol. Biol. 2023;2589:455–466. doi: 10.1007/978-1-0716-2788-4_29. PubMed DOI

Bergman J.A., Woan K., Perez-Villarroel P., Villagra A., Sotomayor E.M., Kozikowski A.P. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J. Med. Chem. 2012;55:9891–9899. doi: 10.1021/jm301098e. PubMed DOI PMC

Furumai R., Komatsu Y., Nishino N., Khochbin S., Yoshida M., Horinouchi S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA. 2001;98:87–92. doi: 10.1073/pnas.98.1.87. PubMed DOI PMC

Butler K.V., Kalin J., Brochier C., Vistoli G., Langley B., Kozikowski A.P. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 2010;132:10842–10846. doi: 10.1021/ja102758v. PubMed DOI PMC

Steimbach R.R., Herbst-Gervasoni C.J., Lechner S., Stewart T.M., Klinke G., Ridinger J., Geraldy M.N.E., Tihanyi G., Foley J.R., Uhrig U., et al. Aza-SAHA Derivatives Are Selective Histone Deacetylase 10 Chemical Probes That Inhibit Polyamine Deacetylation and Phenocopy HDAC10 Knockout. J. Am. Chem. Soc. 2022;144:18861–18875. doi: 10.1021/jacs.2c05030. PubMed DOI PMC

Herp D., Ridinger J., Robaa D., Shinsky S.A., Schmidtkunz K., Yesiloglu T.Z., Bayer T., Steimbach R.R., Herbst-Gervasoni C.J., Merz A., et al. First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement. Chembiochem. 2022;23:e202200180. doi: 10.1002/cbic.202200180. PubMed DOI PMC

Zeyen P., Zeyn Y., Herp D., Mahmoudi F., Yesiloglu T.Z., Erdmann F., Schmidt M., Robaa D., Romier C., Ridinger J., et al. Identification of histone deacetylase 10 (HDAC10) inhibitors that modulate autophagy in transformed cells. Eur. J. Med. Chem. 2022;234:114272. doi: 10.1016/j.ejmech.2022.114272. PubMed DOI PMC

Geraldy M., Morgen M., Sehr P., Steimbach R.R., Moi D., Ridinger J., Oehme I., Witt O., Malz M., Nogueira M.S., et al. Selective Inhibition of Histone Deacetylase 10: Hydrogen Bonding to the Gatekeeper Residue is Implicated. J. Med. Chem. 2019;62:4426–4443. doi: 10.1021/acs.jmedchem.8b01936. PubMed DOI

Hai Y., Shinsky S.A., Porter N.J., Christianson D.W. Histone deacetylase 10 structure and molecular function as a polyamine deacetylase. Nat. Commun. 2017;8:15368. doi: 10.1038/ncomms15368. PubMed DOI PMC

Herbst-Gervasoni C.J., Steimbach R.R., Morgen M., Miller A.K., Christianson D.W. Structural Basis for the Selective Inhibition of HDAC10, the Cytosolic Polyamine Deacetylase. ACS Chem. Biol. 2020;15:2154–2163. doi: 10.1021/acschembio.0c00362. PubMed DOI PMC

Herbst-Gervasoni C.J., Christianson D.W. X-ray Crystallographic Snapshots of Substrate Binding in the Active Site of Histone Deacetylase 10. Biochemistry. 2021;60:303–313. doi: 10.1021/acs.biochem.0c00936. PubMed DOI PMC

Park J.K., Shon S., Yoo H.J., Suh D.H., Bae D., Shin J., Jun J.H., Ha N., Song H., Choi Y.I., et al. Inhibition of histone deacetylase 6 suppresses inflammatory responses and invasiveness of fibroblast-like-synoviocytes in inflammatory arthritis. Arthritis Res. Ther. 2021;23:177. doi: 10.1186/s13075-021-02561-4. PubMed DOI PMC

Huang W.J., Chen C.C., Chao S.W., Yu C.C., Yang C.Y., Guh J.H., Lin Y.C., Kuo C.I., Yang P., Chang C.I. Synthesis and evaluation of aliphatic-chain hydroxamates capped with osthole derivatives as histone deacetylase inhibitors. Eur. J. Med. Chem. 2011;46:4042–4049. doi: 10.1016/j.ejmech.2011.06.002. PubMed DOI

Shen S., Kozikowski A.P. Why Hydroxamates May Not Be the Best Histone Deacetylase Inhibitors—What Some May Have Forgotten or Would Rather Forget? ChemMedChem. 2016;11:15–21. doi: 10.1002/cmdc.201500486. PubMed DOI PMC

Summers J.B., Gunn B.P., Mazdiyasni H., Goetze A.M., Young P.R., Bouska J.B., Dyer R.D., Brooks D.W., Carter G.W. In vivo characterization of hydroxamic acid inhibitors of 5-lipoxygenase. J. Med. Chem. 1987;30:2121–2126. doi: 10.1021/jm00394a032. PubMed DOI

Ginsel C., Plitzko B., Froriep D., Stolfa D.A., Jung M., Kubitza C., Scheidig A.J., Havemeyer A., Clement B. The Involvement of the Mitochondrial Amidoxime Reducing Component (mARC) in the Reductive Metabolism of Hydroxamic Acids. Drug Metab. Dispos. 2018;46:1396–1402. doi: 10.1124/dmd.118.082453. PubMed DOI

Dalvie D., Cosker T., Boyden T., Zhou S., Schroeder C., Potchoiba M.J. Metabolism distribution and excretion of a matrix metalloproteinase-13 inhibitor, 4-[4-(4-fluorophenoxy)-benzenesulfonylamino]tetrahydropyran-4-carboxylic acid hydroxyamide (CP-544439), in rats and dogs: Assessment of the metabolic profile of CP-544439 in plasma and urine of humans. Drug Metab. Dispos. 2008;36:1869–1883. doi: 10.1124/dmd.108.022566. PubMed DOI

Lee M.S., Isobe M. Metabolic activation of the potent mutagen, 2-naphthohydroxamic acid, in Salmonella typhimurium TA98. Cancer Res. 1990;50:4300–4307. PubMed

Fruhauf A., Meyer-Almes F.J. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules. 2021;26:5151. doi: 10.3390/molecules26175151. PubMed DOI PMC

Zha Y.L., Zhang G., Li J.J. Medicinal chemistry insights into non-hydroxamate HDAC6 selective inhibitors. Med. Chem. Res. 2023;32:1–14. doi: 10.1007/s00044-022-02987-8. DOI

Lee J., Younghue H., Kim Y., Choi D., Min J., Miseon B., Yang H., Kim D. 1,3,4-Oxadiazole Sulfonamide Derivative Compounds as Histone Deacetylase 6 Inhibitor, and the Pharmaceutical Composition Comprising the Same. WO2017018803A1. 2017 February 2;

Kim Y., Lee C.S., Oh J.T., Hyeseung S., Choi J., Lee J. Oxadiazole Amine Derivative Compounds as Histone Deacetylase 6 Inhibitor, and the Pharmaceutical Composition Comprising the Same. WO2017065473. 2017 April 20;

Lobera M., Madauss K.P., Pohlhaus D.T., Wright Q.G., Trocha M., Schmidt D.R., Baloglu E., Trump R.P., Head M.S., Hofmann G.A., et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol. 2013;9:319–325. doi: 10.1038/nchembio.1223. PubMed DOI

Keuler T., Konig B., Buckreiss N., Kraft F.B., Konig P., Schaker-Hubner L., Steinebach C., Bendas G., Gutschow M., Hansen F.K. Development of the first non-hydroxamate selective HDAC6 degraders. Chem. Commun. 2022;58:11087–11090. doi: 10.1039/D2CC03712B. PubMed DOI

Maciolek C.M., Ma B., Menzel K., Laliberte S., Bateman K., Krolikowski P., Gibson C.R. Novel cytochrome P450-mediated ring opening of the 1,3,4-oxadiazole in setileuton, a 5-lipoxygenase inhibitor. Drug Metab. Dispos. 2011;39:763–770. doi: 10.1124/dmd.110.037366. PubMed DOI

Machleidt T., Woodroofe C.C., Schwinn M.K., Mendez J., Robers M.B., Zimmerman K., Otto P., Daniels D.L., Kirkland T.A., Wood K.V. NanoBRET—A Novel BRET Platform for the Analysis of Protein-Protein Interactions. ACS Chem. Biol. 2015;10:1797–1804. doi: 10.1021/acschembio.5b00143. PubMed DOI

Robers M.B., Dart M.L., Woodroofe C.C., Zimprich C.A., Kirkland T.A., Machleidt T., Kupcho K.R., Levin S., Hartnett J.R., Zimmerman K., et al. Target engagement and drug residence time can be observed in living cells with BRET. Nat. Commun. 2015;6:10091. doi: 10.1038/ncomms10091. PubMed DOI PMC

Millard C.J., Watson P.J., Fairall L., Schwabe J.W.R. Targeting Class I Histone Deacetylases in a “Complex” Environment. Trends Pharmacol. Sci. 2017;38:363–377. doi: 10.1016/j.tips.2016.12.006. PubMed DOI

Schrump D.S. Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: Mechanisms and potential clinical implications. Clin. Cancer Res. 2009;15:3947–3957. doi: 10.1158/1078-0432.CCR-08-2787. PubMed DOI PMC

Simoes-Pires C., Zwick V., Nurisso A., Schenker E., Carrupt P.A., Cuendet M. HDAC6 as a target for neurodegenerative diseases: What makes it different from the other HDACs? Mol. Neurodegener. 2013;8:7. doi: 10.1186/1750-1326-8-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...