Determining Potency of Inhibitors Targeting Histone Deacetylase 6 by Quantification of Acetylated Tubulin in Cells
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA249248
NCI NIH HHS - United States
- Klíčová slova
- Acetyl-histone, Acetyl-tubulin, Monoclonal antibody 6-11B-1, Quantitative Western blotting,
- MeSH
- acetylace MeSH
- histondeacetylasa 6 metabolismus MeSH
- inhibitory histondeacetylas * farmakologie MeSH
- lidé MeSH
- tubulin * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- histondeacetylasa 6 MeSH
- inhibitory histondeacetylas * MeSH
- tubulin * MeSH
During the preclinical development of small molecule inhibitors, compounds or compound libraries are typically first screened using purified target enzymes in vitro to select candidates with high potency. In the later stages of the development, however, functional cell-based assays may provide biologically more relevant data. In this chapter, we describe a detailed protocol for determining the potency of inhibitors targeting human histone deacetylase 6 in complex cellular environments. Cells are first treated with a dilution series of tested compounds, cell lysates separated by SDS-PAGE, and electrotransferred to a blotting membrane. The inhibitor potency is then determined indirectly by quantifying the levels of acetylated tubulin as a surrogate readout.
Zobrazit více v PubMed
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749 DOI
Cappellacci L, Perinelli DR, Maggi F, Grifantini M, Petrelli R (2020) Recent Progress in histone deacetylase inhibitors as anticancer agents. Curr Med Chem 27:2449–2493 DOI
Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18:1414 DOI
Suraweera A, O’Byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 8:92 DOI
Melesina J, Simoben CV, Praetorius L, Bulbul EF, Robaa D, Sippl W (2021) Strategies to design selective histone deacetylase inhibitors. ChemMedChem 16:1336–1359 DOI
Benoy V, Van Helleputte L, Prior R, d’Ydewalle C, Haeck W, Geens N et al (2018) HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-tooth disease. Brain 141:673–687 DOI
Kozikowski AP, Shen S, Pardo M, Tavares MT, Szarics D, Benoy V et al (2019) Brain penetrable histone deacetylase 6 inhibitor SW-100 ameliorates memory and learning impairments in a mouse model of fragile X syndrome. ACS Chem Neurosci 10:1679–1695 DOI
Noonepalle S, Shen S, Ptacek J, Tavares MT, Zhang G, Stransky J et al (2020) Rational Design of Suprastat: a novel selective histone deacetylase 6 inhibitor with the ability to potentiate immunotherapy in melanoma models. J Med Chem 63:10246–10262 DOI
Ressing N, Sonnichsen M, Osko JD, Scholer A, Schliehe-Diecks J, Skerhut A et al (2020) Multicomponent synthesis, binding mode, and structure-activity relationship of selective histone deacetylase 6 (HDAC6) inhibitors with bifurcated capping groups. J Med Chem 63:10339–10351 DOI
Shen S, Picci C, Ustinova K, Benoy V, Kutil Z, Zhang G et al (2021) Tetrahydroquinoline-capped histone deacetylase 6 inhibitor SW-101 ameliorates pathological phenotypes in a Charcot-Marie-tooth type 2A mouse model. J Med Chem 64:4810–4840 DOI
Stocks M (2013) The small molecule drug discovery process – from target selection to candidate selection. In: Introduction to biological and small molecule drug research and development: theory and case studies. Elsevier, pp 81–126 DOI
Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA, Machleidt T et al (2015) Target engagement and drug residence time can be observed in living cells with BRET. Nat Commun 6:10091 DOI
Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458 DOI
Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV et al (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607 DOI
Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J et al (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27:197–213 DOI
Piperno G, LeDizet M, Chang XJ (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104:289–302 DOI
Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D et al (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21:6820–6831 DOI
Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M et al (2012) Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119:2579–2589 DOI
Ustinova K, Novakova Z, Saito M, Meleshin M, Mikesova J, Kutil Z et al (2020) The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation. J Biol Chem 295:2614–2628 DOI
Yang X, Naughton SX, Han Z, He M, Zheng YG, Terry AV Jr et al (2018) Mass spectrometric quantitation of tubulin acetylation from pepsin-digested rat brain tissue using a novel stable-isotope standard and capture by anti-peptide antibody (SISCAPA) method. Anal Chem 90:2155–2163 DOI
Skultetyova L, Ustinova K, Kutil Z, Novakova Z, Pavlicek J, Mikesova J et al (2017) Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep 7:11547 DOI
Geuens G, Gundersen GG, Nuydens R, Cornelissen F, Bulinski JC, DeBrabander M (1986) Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells. J Cell Biol 103:1883–1893 DOI
Janes KA (2015) An analysis of critical factors for quantitative immunoblotting. Sci Signal 8:rs2 DOI
McDonough AA, Veiras LC, Minas JN, Ralph DL (2015) Considerations when quantitating protein abundance by immunoblot. Am J Physiol Cell Physiol 308:C426–C433 DOI
Pillai-Kastoori L, Schutz-Geschwender AR, Harford JA (2020) A systematic approach to quantitative Western blot analysis. Anal Biochem 593:113608 DOI
Bergman JA, Woan K, Perez-Villarroel P, Villagra A, Sotomayor EM, Kozikowski AP (2012) Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J Med Chem 55:9891–9899 DOI
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675 DOI