Elucidation of the tyrosinase/O2/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DK031450
NIDDK NIH HHS - United States
R37 DK031450
NIDDK NIH HHS - United States
PubMed
35939688
PubMed Central
PMC9389030
DOI
10.1073/pnas.2205619119
Knihovny.cz E-zdroje
- Klíčová slova
- binuclear copper, melanin biosynthesis, monooxygenase, oxygen activation, tyrosinase,
- MeSH
- bakteriální proteiny * MeSH
- fenoly * chemie MeSH
- katalýza MeSH
- kyslík * metabolismus MeSH
- měď chemie MeSH
- melaniny * biosyntéza MeSH
- peroxidy chemie MeSH
- Streptomyces * enzymologie MeSH
- tyrosinasa * chemie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- fenoly * MeSH
- kyslík * MeSH
- měď MeSH
- melaniny * MeSH
- peroxidy MeSH
- tyrosinasa * MeSH
Melanins are highly conjugated biopolymer pigments that provide photoprotection in a wide array of organisms, from bacteria to humans. The rate-limiting step in melanin biosynthesis, which is the ortho-hydroxylation of the amino acid L-tyrosine to L-DOPA, is catalyzed by the ubiquitous enzyme tyrosinase (Ty). Ty contains a coupled binuclear copper active site that binds O2 to form a μ:η2:η2-peroxide dicopper(II) intermediate (oxy-Ty), capable of performing the regioselective monooxygenation of para-substituted monophenols to catechols. The mechanism of this critical monooxygenation reaction remains poorly understood despite extensive efforts. In this study, we have employed a combination of spectroscopic, kinetic, and computational methods to trap and characterize the elusive catalytic ternary intermediate (Ty/O2/monophenol) under single-turnover conditions and obtain molecular-level mechanistic insights into its monooxygenation reactivity. Our experimental results, coupled with quantum-mechanics/molecular-mechanics calculations, reveal that the monophenol substrate docks in the active-site pocket of oxy-Ty fully protonated, without coordination to a copper or cleavage of the μ:η2:η2-peroxide O-O bond. Formation of this ternary intermediate involves the displacement of active-site water molecules by the substrate and replacement of their H bonds to the μ:η2:η2-peroxide by a single H bond from the substrate hydroxyl group. This H-bonding interaction in the ternary intermediate enables the unprecedented monooxygenation mechanism, where the μ-η2:η2-peroxide O-O bond is cleaved to accept the phenolic proton, followed by substrate phenolate coordination to a copper site concomitant with its aromatic ortho-hydroxylation by the nonprotonated μ-oxo. This study provides insights into O2 activation and reactivity by coupled binuclear copper active sites with fundamental implications in biocatalysis.
Department of Chemistry Stanford University Stanford CA 94305
Faculty of Science Charles University 128 00 Prague 2 Czech Republic
Zobrazit více v PubMed
Kirti K., Amita S., Priti S., Mukesh Kumar A., Jyoti S., Colorful world of microbes: Carotenoids and their applications. Adv. Biol. 2014, 1–13 (2014).
Simon J. D., Peles D., Wakamatsu K., Ito S., Current challenges in understanding melanogenesis: Bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res. 22, 563–579 (2009). PubMed
Solomon E. I., et al. , Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014). PubMed PMC
Nosanchuk J. D., Casadevall A., The contribution of melanin to microbial pathogenesis. Cell. Microbiol. 5, 203–223 (2003). PubMed
Ciui B., et al. , Wearable wireless tyrosinase bandage and microneedle sensors: Toward melanoma screening. Adv. Healthc. Mater. 7, e1701264 (2018). PubMed
Buitrago E., et al. , Are human tyrosinase and related proteins suitable targets for melanoma therapy? Curr. Top. Med. Chem. 16, 3033–3047 (2016). PubMed
Carballo-Carbajal I., et al. , Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis. Nat. Commun. 10, 973 (2019). PubMed PMC
Ananya N., Kumar J. S., Ram S. H., L-DOPA, a promising pro-drug against Parkinson’s disease: Present and future perspective. Res. J. Biotechnol. 14, 10 (2019).
Tinello F., Lante A., Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innov. Food Sci. Emerg. Technol. 50, 73–83 (2018).
Lobba M. J., et al. , Site-specific bioconjugation through enzyme-catalyzed tyrosine-cysteine bond formation. ACS Cent. Sci. 6, 1564–1571 (2020). PubMed PMC
Struck A.-W., et al. , An enzyme cascade for selective modification of tyrosine residues in structurally diverse peptides and proteins. J. Am. Chem. Soc. 138, 3038–3045 (2016). PubMed
Frangu A., Pravcová K., Šilarová P., Arbneshi T., Sýs M., Flow injection tyrosinase biosensor for direct determination of acetaminophen in human urine. Anal. Bioanal. Chem. 411, 2415–2424 (2019). PubMed
Florescu M., David M., Tyrosinase-based biosensors for selective dopamine detection. Sensors (Basel) 17, 1314 (2017). PubMed PMC
Min K., Park G. W., Yoo Y. J., Lee J.-S., A perspective on the biotechnological applications of the versatile tyrosinase. Bioresour. Technol. 289, 121730 (2019). PubMed
Matoba Y., Kumagai T., Yamamoto A., Yoshitsu H., Sugiyama M., Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281, 8981–8990 (2006). PubMed
Baldwin M. J., et al. , Spectroscopic studies of side-on peroxide-bridged binuclear copper(II) model complexes of relevance to oxyhemocyanin and oxytyrosinase. J. Am. Chem. Soc. 114, 10421–10431 (1992).
Baldwin M. J., et al. , Spectroscopic and theoretical studies of an end-on peroxide-bridged coupled binuclear copper(II) model complex of relevance to the active sites in hemocyanin and tyrosinase. J. Am. Chem. Soc. 113, 8671–8679 (1991).
Halfen J. A., et al. , Reversible cleavage and formation of the dioxygen O-O bond within a dicopper complex. Science 271, 1397–1400 (1996). PubMed
Pidcock E., Obias H. V., Zhang C. X., Karlin K. D., Solomon E. I., Investigation of the reactive oxygen intermediate in an arene hydroxylation reaction performed by Xylyl-bridged binuclear copper complexes. J. Am. Chem. Soc. 120, 7841–7847 (1998).
Mirica L. M., et al. , Tyrosinase reactivity in a model complex: An alternative hydroxylation mechanism. Science 308, 1890–1892 (2005). PubMed
Spada A., Palavicini S., Monzani E., Bubacco L., Casella L., Trapping tyrosinase key active intermediate under turnover. Dalton Trans. (33):6468–6471 (2009). PubMed
Goldfeder M., Kanteev M., Isaschar-Ovdat S., Adir N., Fishman A., Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins. Nat. Commun. 5, 4505 (2014). PubMed
Decker H., Solem E., Tuczek F., Are glutamate and asparagine necessary for tyrosinase activity of type-3 copper proteins? Inorg. Chim. Acta 481, 32–37 (2018).
Fujieda N., et al. , Copper-oxygen dynamics in the tyrosinase mechanism. Angew. Chem. Int. Ed. Engl. 59, 13385–13390 (2020). PubMed
Conrad J. S., Dawso S. R., Hubbard E. R., Meyers T. E., Strothkamp K. G., Inhibitor binding to the binuclear active site of tyrosinase: Temperature, pH, and solvent deuterium isotope effects. Biochemistry 33, 5739–5744 (1994). PubMed
Matoba Y., Oda K., Muraki Y., Masuda T., The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity. Int. J. Biol. Macromol. 183, 1861–1870 (2021). PubMed
Kipouros I., et al. , Evidence for H-bonding interactions to the μ-η2:η2-peroxide of oxy-tyrosinase that activate its coupled binuclear copper site. Chem. Commun. (Camb.) 58, 3913–3916 (2022). PubMed PMC
Yamazaki S., Itoh S., Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system. J. Am. Chem. Soc. 125, 13034–13035 (2003). PubMed
Rodríguez-López J. N., Tudela J., Varón R., García-Carmona F., García-Cánovas F., Analysis of a kinetic model for melanin biosynthesis pathway. J. Biol. Chem. 267, 3801–3810 (1992). PubMed
Op’t Holt B. T., et al. , Reaction coordinate of a functional model of tyrosinase: Spectroscopic and computational characterization. J. Am. Chem. Soc. 131, 6421–6438 (2009). PubMed PMC
Eickman N. C., Solomon E. I., Larrabee J. A., Spiro T. G., Lerch K., Ultraviolet Resonance Raman Study of Oxytyrosinase. Comparison with Oxyhemocyanins. J. Am. Chem. Soc. 100, 6429–6431 (1978).
Solem E., Tuczek F., Decker H., Tyrosinase versus catechol oxidase: One asparagine makes the difference. Angew. Chem. Int. Ed. Engl. 55, 2884–2888 (2016). PubMed
Decker H., Dillinger R., Tuczek F., How Does Tyrosinase Work? Recent Insights from Model Chemistry and Structural Biology. Angew. Chem. Int. Ed. Engl. 39, 1591–1595 (2000). PubMed
Matoba Y., et al. , Activation mechanism of the Streptomyces tyrosinase assisted by the caddie protein. Biochemistry 56, 5593–5603 (2017). PubMed
Wilcox D. E., et al. , Substrate analog binding to the coupled binuclear copper active site in tyrosinase. J. Am. Chem. Soc. 107, 4015–4027 (1985).
Jiang H., Lai W., Monophenolase and catecholase activity of Aspergillus oryzae catechol oxidase: Insights from hybrid QM/MM calculations. Org. Biomol. Chem. 18, 5192–5202 (2020). PubMed
Lind T., Siegbahn P. E. M., Crabtree R. H., A quantum chemical study of the mechanism of tyrosinase. J. Phys. Chem. B 103, 1193–1202 (1999).
Inoue T., Shiota Y., Yoshizawa K., Quantum chemical approach to the mechanism for the biological conversion of tyrosine to dopaquinone. J. Am. Chem. Soc. 130, 16890–16897 (2008). PubMed
Matoba Y., et al. , Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein. PLoS Biol. 16, e3000077 (2018). PubMed PMC
Osako T., et al. , Oxidation Mechanism of Phenols by Dicopper-Dioxygen (Cu2/O2) Complexes. J. Am. Chem. Soc. 125, 11027–11033 (2003). PubMed
Snyder B. E. R., Bols M. L., Schoonheydt R. A., Sels B. F., Solomon E. I., Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chem. Rev. 118, 2718–2768 (2018). PubMed
Feng X., et al. , Rational construction of an artificial binuclear copper monooxygenase in a metal-organic framework. J. Am. Chem. Soc. 143, 1107–1118 (2021). PubMed
Chang T.-S., An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10, 2440–2475 (2009). PubMed PMC
Gabrielle M., et al. , Targeted prodrug design for the treatment of malignant melanoma. J. Dermatol. Res. Ther. 2, 1–8 (2016).
Ginsbach J. W., et al. , Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF. Proc. Natl. Acad. Sci. U.S.A. 109, 10793–10797 (2012). PubMed PMC
Noguchi A., Kitamura T., Onaka H., Horinouchi S., Ohnishi Y., A copper-containing oxidase catalyzes C-nitrosation in nitrosobenzamide biosynthesis. Nat. Chem. Biol. 6, 641–643 (2010). PubMed
Stańczak A., Chalupský J., Rulíšek L., Straka M., Comprehensive theoretical view of the [Cu2 O2] side-on-peroxo-/bis-μ-oxo equilibria. ChemPhysChem, e202200076 (2022). PubMed
Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors