Evidence for H-bonding interactions to the μ-η2:η2-peroxide of oxy-tyrosinase that activate its coupled binuclear copper site
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
R01 DK031450
NIDDK NIH HHS - United States
R37 DK031450
NIDDK NIH HHS - United States
PubMed
35237779
PubMed Central
PMC8966618
DOI
10.1039/d2cc00750a
Knihovny.cz E-resources
- MeSH
- Catalytic Domain MeSH
- Oxygen chemistry MeSH
- Copper * chemistry MeSH
- Peroxides * chemistry MeSH
- Spectrum Analysis MeSH
- Monophenol Monooxygenase metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Oxygen MeSH
- Copper * MeSH
- Peroxides * MeSH
- Monophenol Monooxygenase MeSH
The factors that control the diverse reactivity of the μ-η2:η2-peroxo dicopper(II) oxy-intermediates in the coupled binuclear copper proteins remain elusive. Here, spectroscopic and computational methods reveal H-bonding interactions between active-site waters and the μ-η2:η2-peroxide of oxy-tyrosinase, and define their effects on the Cu(II)2O2 electronic structure and O2 activation.
Department of Chemistry Stanford University Stanford California 94305 USA
Department of Chemistry Whitman College Walla Walla WA 99362 USA
Faculty of Science Charles University Albertov 2038 6 128 00 Praha 2 Czech Republic
See more in PubMed
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG and Tian L, Chemical Reviews, 2014, 114, 3659–3853. PubMed PMC
Hirota S, Kawahara T, Lonardi E, de Waal E, Funasaki N and Canters GW, J. Am. Chem. Soc, 2005, 127, 17966–17967. PubMed
Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J and Hol WGJ, Proteins, 1994, 19, 302–309. PubMed
Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H and Sugiyama M, Journal of Biological Chemistry, 2006, 281, 8981–8990. PubMed
Brown JM, Powers L, Kincaid B, Larrabee JA and Spiro TG, J. Am. Chem. Soc, 1980, 102, 4210–4216.
Woolery GL, Powers L, Winkler M, Solomon EI, Lerch K and Spiro TG, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1984, 788, 155–161. PubMed
Lerch K and Ettlinger L, European Journal of Biochemistry, 1972, 31, 427–437. PubMed
Ginsbach JW, Kieber-Emmons MT, Nomoto R, Noguchi A, Ohnishi Y and Solomon EI, Proceedings of the National Academy of Sciences, 2012, 109, 10793–10797. PubMed PMC
Morioka C, Tachi Y, Suzuki S and Itoh S, J. Am. Chem. Soc, 2006, 128, 6788–6789. PubMed
Carballo-Carbajal I, Laguna A, Romero-Giménez J, Cuadros T, Bové J, Martinez-Vicente M, Parent A, Gonzalez-Sepulveda M, Peñuelas N, Torra A, Rodríguez-Galván B, Ballabio A, Hasegawa T, Bortolozzi A, Gelpi E and Vila M, Nature Communications, DOI:10.1038/s41467-019-08858-y. PubMed DOI PMC
Tinello F and Lante A, Innovative Food Science & Emerging Technologies, 2018, 50, 73–83.
Mogilevsky CS, Lobba MJ, Brauer DD, Marmelstein AM, Maza JC, Gleason JM, Doudna JA and Francis MB, J. Am. Chem. Soc, 2021, 143, 13538–13547. PubMed PMC
Prexler SM, Frassek M, Moerschbacher BM and Dirks-Hofmeister ME, Angew. Chem. Int. Ed, 2019, 58, 8757–8761. PubMed
Decker H, Schweikardt T and Tuczek F, Angew. Chem. Int. Ed, 2006, 45, 4546–4550. PubMed
Kampatsikas I and Rompel A, ChemBioChem, 2021, 22, 1161–1175. PubMed PMC
Fujieda N, Umakoshi K, Ochi Y, Nishikawa Y, Yanagisawa S, Kubo M, Kurisu G and Itoh S, Angew. Chem. Int. Ed, 2020, 59, 13385–13390. PubMed
Larrabee JA, Spiro TG, Ferris NS, Woodruff WH, Maltese WA and Kerr MS, J. Am. Chem. Soc, 1977, 99, 1979–1980. PubMed
Eickman NC, Solomon EI, Larrabee JA, Spiro TG and Lerch K, 1978, 3.
Ling J, Nestor LP, Czernuszewicz RS, Spiro TG, Fraczkiewicz R, Sharma KD, Loehr TM and Sanders-Loehr J, J. Am. Chem. Soc, 1994, 116, 7682–7691.
Decker H, Schweikardt T, Nillius D, Salzbrunn U, Jaenicke E and Tuczek F, Gene, 2007, 398, 183–191. PubMed
Shiemke AK, Loehr TM and Sanders-Loehr Joann., J. Am. Chem. Soc, 1986, 108, 2437–2443. PubMed
Sjoeberg BM, Sanders-Loehr J and Loehr TM, Biochemistry, 1987, 26, 4242–4247. PubMed
Goldfeder M, Kanteev M, Isaschar-Ovdat S, Adir N and Fishman A, Nat Commun, 2014, 5, 4505. PubMed
Matoba Y, Oda K, Muraki Y and Masuda T, International Journal of Biological Macromolecules, 2021, 183, 1861–1870. PubMed
Bijelic A, Pretzler M, Molitor C, Zekiri F and Rompel A, Angew. Chem. Int. Ed, 2015, 54, 14677–14680. PubMed PMC
Kanteev M, Goldfeder M and Fishman A, Protein Science, 2015, 24, 1360–1369. PubMed PMC
Dirks-Hofmeister ME, Singh R, Leufken CM, Inlow JK and Moerschbacher BM, PLoS ONE, 2014, 9, e99759. PubMed PMC
Park GY, Qayyum MF, Woertink J, Hodgson KO, Hedman B, Narducci Sarjeant AA, Solomon EI and Karlin KD, J. Am. Chem. Soc, 2012, 134, 8513–8524. PubMed PMC
Liang H-C, Zhang CX, Henson MJ, Sommer RD, Hatwell KR, Kaderli S, Zuberbühler AD, Rheingold AL, Solomon EI and Karlin KD, J. Am. Chem. Soc, 2002, 124, 4170–4171. PubMed
Diaz DE, Quist DA, Herzog AE, Schaefer AW, Kipouros I, Bhadra M, Solomon EI and Karlin KD, Angew. Chem, 2019, 131, 17736–17740. PubMed PMC
Bhadra M, Lee JYC, Cowley RE, Kim S, Siegler MA, Solomon EI and Karlin KD, J. Am. Chem. Soc, 2018, 140, 9042–9045. PubMed PMC
Mann SI, Heinisch T, Ward TR and Borovik AS, J. Am. Chem. Soc, 2017, 139, 17289–17292. PubMed PMC
Matoba Y, Kihara S, Bando N, Yoshitsu H, Sakaguchi M, Kayama K, Yanagisawa S, Ogura T and Sugiyama M, PLoS Biol, 2018, 16, e3000077. PubMed PMC
Sendovski M, Kanteev M, Ben-Yosef VS, Adir N and Fishman A, Journal of Molecular Biology, 2011, 405, 227–237. PubMed
Qayyum MF, Sarangi R, Fujisawa K, Stack TDP, Karlin KD, Hodgson KO, Hedman B and Solomon EI, J. Am. Chem. Soc, 2013, 135, 17417–17431. PubMed PMC