Experimental Evidence and Mechanistic Description of the Phenolic H-Transfer to the Cu2O2 Active Site of oxy-Tyrosinase

. 2023 Oct 25 ; 145 (42) : 22866-22870. [epub] 20231016

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37844210

Grantová podpora
R01 DK031450 NIDDK NIH HHS - United States
R37 DK031450 NIDDK NIH HHS - United States

Tyrosinase is a ubiquitous coupled binuclear copper enzyme that activates O2 toward the regioselective monooxygenation of monophenols to catechols via a mechanism that remains only partially defined. Here, we present new mechanistic insights into the initial steps of this monooxygenation reaction by employing a pre-steady-state, stopped-flow kinetics approach that allows for the direct measurement of the monooxygenation rates for a series of para-substituted monophenols by oxy-tyrosinase. The obtained biphasic Hammett plot and the associated solvent kinetic isotope effect values provide direct evidence for an initial H-transfer from the protonated phenolic substrate to the Cu2O2 core of oxy-tyrosinase. The correlation of these experimental results to quantum mechanics/molecular mechanics calculations provides a detailed mechanistic description of this H-transfer step. These new mechanistic insights revise and expand our fundamental understanding of Cu2O2 active sites in biology.

Zobrazit více v PubMed

Solomon EI; Heppner DE; Johnston EM; Ginsbach JW; Cirera J; Qayyum M; Kieber-Emmons MT; Kjaergaard CH; Hadt RG; Tian L Copper Active Sites in Biology. Chemical Reviews 2014, 114 (7), 3659–3853. 10.1021/cr400327t. PubMed DOI PMC

Pirro F; La Gatta S; Arrigoni F; Famulari A; Maglio O; Del Vecchio P; Chiesa M; De Gioia L; Bertini L; Chino M; Nastri F; Lombardi A A De Novo‐Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity. Angew Chem Int Ed 2023, 62 (1). e202211552 10.1002/anie.202211552. PubMed DOI

Snyder BER; Bols ML; Schoonheydt RA; Sels BF; Solomon EI Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chem. Rev 2018, 118 (5), 2718–2768. 10.1021/acs.chemrev.7b00344. PubMed DOI

Feng X; Song Y; Chen JS; Xu Z; Dunn SJ; Lin W Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal–Organic Framework. J. Am. Chem. Soc 2021, 143 (2), 1107–1118. 10.1021/jacs.0c11920. PubMed DOI

Itoh S; Fukuzumi S Monooxygenase Activity of Type 3 Copper Proteins. Accounts of Chemical Research 2007, 40 (7), 592–600. 10.1021/ar6000395. PubMed DOI

Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis. Journal of Biological Chemistry 2006, 281 (13), 8981–8990. 10.1074/jbc.M509785200. PubMed DOI

Eickman NC; Solomon EI; Larrabee JA; Spiro TG; Lerch K Ultraviolet Resonance Raman Study of Oxytyrosinase. Comparison with Oxyhemocyanins 1978, 100,20,6529–6531

Kipouros I; Stańczak A; Culka M; Andris E; Machonkin TR; Rulíšek L; Solomon EI Evidence for H-Bonding Interactions to the μ-η 2 :η 2 -Peroxide of Oxy-Tyrosinase That Activate Its Coupled Binuclear Copper Site. Chem. Commun 2022, 58 (24), 3913–3916. 10.1039/D2CC00750A. PubMed DOI PMC

Himmelwright RS; Eickman NC; LuBien CD; Solomon EI; Lerch K Chemical and Spectroscopic Studies of the Binuclear Copper Active Site of Neurospora Tyrosinase: Comparison to Hemocyanins. Journal of the American Chemical Society 1980, 102 (24), 7339–7344. 10.1021/ja00544a031. DOI

Ross PK; Solomon EI An Electronic Structural Comparison of Copper-Peroxide Complexes of Relevance to Hemocyanin and Tyrosinase Active Sites. J. Am. Chem. Soc 1991, 113 (9), 3246–3259. 10.1021/ja00009a005. DOI

Yamazaki S; Itoh S Kinetic Evaluation of Phenolase Activity of Tyrosinase Using Simplified Catalytic Reaction System. J. Am. Chem. Soc 2003, 125 (43), 13034–13035. 10.1021/ja036425d. PubMed DOI

Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI Elucidation of the Tyrosinase/O2 /Monophenol Ternary Intermediate That Dictates the Monooxygenation Mechanism in Melanin Biosynthesis. Proc. Natl. Acad. Sci. U.S.A 2022, 119 (33), e2205619119. 10.1073/pnas.2205619119. PubMed DOI PMC

Matoba Y; Kihara S; Bando N; Yoshitsu H; Sakaguchi M; Kayama K; Yanagisawa S; Ogura T; Sugiyama M Catalytic Mechanism of the Tyrosinase Reaction toward the Tyr98 Residue in the Caddie Protein. PLoS Biol 2018, 16 (12), e3000077. 10.1371/journal.pbio.3000077. PubMed DOI PMC

Siegbahn PEM The Catalytic Cycle of Tyrosinase: Peroxide Attack on the Phenolate Ring Followed by O-O Bond Cleavage. J Biol Inorg Chem 2003, 8 (5), 567–576. 10.1007/s00775-003-0449-4. PubMed DOI

Inoue T; Shiota Y; Yoshizawa K Quantum Chemical Approach to the Mechanism for the Biological Conversion of Tyrosine to Dopaquinone. J. Am. Chem. Soc 2008, 130 (50), 16890–16897. 10.1021/ja802618s. PubMed DOI

Kampatsikas I; Rompel A Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type‐III Copper Enzymes? ChemBioChem 2021, 22 (7), 1161–1175. 10.1002/cbic.202000647. PubMed DOI PMC

Decker H; Solem E; Tuczek F Are Glutamate and Asparagine Necessary for Tyrosinase Activity of Type-3 Copper Proteins? Inorganica Chimica Acta 2018, 481, 32–37. 10.1016/j.ica.2017.11.031. DOI

Siegbahn PEM; Borowski T Comparison of QM-Only and QM/MM Models for the Mechanism of Tyrosinase. Faraday Discuss 2011, 148, 109–117. 10.1039/C004378H. PubMed DOI

Kipouros I; Solomon EI New Mechanistic Insights into Coupled Binuclear Copper Monooxygenases from the Recent Elucidation of the Ternary Intermediate of Tyrosinase. FEBS Letters 2023, 597 (1), 65–78. 10.1002/1873-3468.14503. PubMed DOI PMC

Siegbahn PEM; Wirstam M Is the Bis-μ-Oxo Cu 2 (III,III) State an Intermediate in Tyrosinase? J. Am. Chem. Soc 2001, 123 (47), 11819–11820. 10.1021/ja010829t. PubMed DOI

Keown W; Gary JB; Stack TDP High-Valent Copper in Biomimetic and Biological Oxidations. J Biol Inorg Chem 2017, 22 (2–3), 289–305. 10.1007/s00775-016-1420-5. PubMed DOI PMC

Muñoz-Muñoz JL; Berna J; García-Molina M. del M.; Garcia-Molina F; Garcia-Ruiz PA; Varon R; Rodriguez-Lopez JN; Garcia-Canovas F Hydroxylation of P-Substituted Phenols by Tyrosinase: Further Insight into the Mechanism of Tyrosinase Activity. Biochemical and Biophysical Research Communications 2012, 424 (2), 228–233. 10.1016/j.bbrc.2012.06.074. PubMed DOI

Company A; Palavicini S; Garcia-Bosch I; Mas-Ballesté R; Que L; Rybak-Akimova EV; Casella L; Ribas X; Costas M Tyrosinase-Like Reactivity in a CuIII2(μ-O)2 Species. Chem. Eur. J 2008, 14 (12), 3535–3538. 10.1002/chem.200800229. PubMed DOI

Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TDP Tyrosinase Reactivity in a Model Complex: An Alternative Hydroxylation Mechanism. Science 2005, 308 (5730), 1890–1892. 10.1126/science.1112081. PubMed DOI

Solem E; Tuczek F; Decker H Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference. Angewandte Chemie International Edition 2016, 55 (8), 2884–2888. 10.1002/anie.201508534. PubMed DOI

Prexler SM; Frassek M; Moerschbacher BM; Dirks‐Hofmeister ME Catechol Oxidase versus Tyrosinase Classification Revisited by Site‐Directed Mutagenesis Studies. Angew. Chem. Int. Ed 2019, 58 (26), 8757–8761. 10.1002/anie.201902846. PubMed DOI

Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S Copper–Oxygen Dynamics in the Tyrosinase Mechanism. Angew. Chem. Int. Ed 2020, 59 (32), 13385–13390. 10.1002/anie.202004733. PubMed DOI

Goldfeder M; Kanteev M; Isaschar-Ovdat S; Adir N; Fishman A Determination of Tyrosinase Substrate-Binding Modes Reveals Mechanistic Differences between Type-3 Copper Proteins. Nat Commun 2014, 5 (1), 4505. 10.1038/ncomms5505. PubMed DOI

Kampatsikas I; Pretzler M; Rompel A Identification of Amino Acid Residues Responsible for C−H Activation in Type‐III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase. Angew. Chem. Int. Ed 2020, 59 (47), 20940–20945. 10.1002/anie.202008859. PubMed DOI PMC

Hansch Corwin.; Leo A; Taft RW A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev 1991, 91 (2), 165–195. 10.1021/cr00002a004. DOI

Maldonado-Domínguez M; Bím D; Fučík R; Čurík R; Srnec M Reactive Mode Composition Factor Analysis of Transition States: The Case of Coupled Electron–Proton Transfers. Phys. Chem. Chem. Phys 2019, 21 (45), 24912–24918. 10.1039/C9CP05131G. PubMed DOI

Warren JJ; Tronic TA; Mayer JM Thermochemistry of Proton-Coupled Electron Transfer Reagents and Its Implications. Chem. Rev 2010, 110 (12), 6961–7001. 10.1021/cr100085k. PubMed DOI PMC

Osako T; Ohkubo K; Taki M; Tachi Y; Fukuzumi S; Itoh S Oxidation Mechanism of Phenols by Dicopper-Dioxygen (Cu2/O2) Complexes. Journal of the American Chemical Society 2003, 125, 11027–11033. PubMed

Hoffmann A; Citek C; Binder S; Goos A; Rübhausen M; Troeppner O; Ivanović-Burmazović I; Wasinger EC; Stack TDP; Herres-Pawlis S Catalytic Phenol Hydroxylation with Dioxygen: Extension of the Tyrosinase Mechanism beyond the Protein Matrix. Angew. Chem. Int. Ed 2013, 52 (20), 5398–5401. 10.1002/anie.201301249. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...