Experimental Evidence and Mechanistic Description of the Phenolic H-Transfer to the Cu2O2 Active Site of oxy-Tyrosinase
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DK031450
NIDDK NIH HHS - United States
R37 DK031450
NIDDK NIH HHS - United States
PubMed
37844210
PubMed Central
PMC10615789
DOI
10.1021/jacs.3c07450
Knihovny.cz E-zdroje
- MeSH
- fenoly chemie MeSH
- katalytická doména MeSH
- katecholy chemie MeSH
- kinetika MeSH
- měď * chemie MeSH
- tyrosinasa * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fenoly MeSH
- katecholy MeSH
- měď * MeSH
- tyrosinasa * MeSH
Tyrosinase is a ubiquitous coupled binuclear copper enzyme that activates O2 toward the regioselective monooxygenation of monophenols to catechols via a mechanism that remains only partially defined. Here, we present new mechanistic insights into the initial steps of this monooxygenation reaction by employing a pre-steady-state, stopped-flow kinetics approach that allows for the direct measurement of the monooxygenation rates for a series of para-substituted monophenols by oxy-tyrosinase. The obtained biphasic Hammett plot and the associated solvent kinetic isotope effect values provide direct evidence for an initial H-transfer from the protonated phenolic substrate to the Cu2O2 core of oxy-tyrosinase. The correlation of these experimental results to quantum mechanics/molecular mechanics calculations provides a detailed mechanistic description of this H-transfer step. These new mechanistic insights revise and expand our fundamental understanding of Cu2O2 active sites in biology.
Department of Chemistry Stanford University Stanford California 94305 United States
Faculty of Science Charles University Albertov 2038 6 128 00 Praha 2 Czech Republic
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences 182 23 Prague Czech Republic
Zobrazit více v PubMed
Solomon EI; Heppner DE; Johnston EM; Ginsbach JW; Cirera J; Qayyum M; Kieber-Emmons MT; Kjaergaard CH; Hadt RG; Tian L Copper Active Sites in Biology. Chemical Reviews 2014, 114 (7), 3659–3853. 10.1021/cr400327t. PubMed DOI PMC
Pirro F; La Gatta S; Arrigoni F; Famulari A; Maglio O; Del Vecchio P; Chiesa M; De Gioia L; Bertini L; Chino M; Nastri F; Lombardi A A De Novo‐Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity. Angew Chem Int Ed 2023, 62 (1). e202211552 10.1002/anie.202211552. PubMed DOI
Snyder BER; Bols ML; Schoonheydt RA; Sels BF; Solomon EI Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chem. Rev 2018, 118 (5), 2718–2768. 10.1021/acs.chemrev.7b00344. PubMed DOI
Feng X; Song Y; Chen JS; Xu Z; Dunn SJ; Lin W Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal–Organic Framework. J. Am. Chem. Soc 2021, 143 (2), 1107–1118. 10.1021/jacs.0c11920. PubMed DOI
Itoh S; Fukuzumi S Monooxygenase Activity of Type 3 Copper Proteins. Accounts of Chemical Research 2007, 40 (7), 592–600. 10.1021/ar6000395. PubMed DOI
Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis. Journal of Biological Chemistry 2006, 281 (13), 8981–8990. 10.1074/jbc.M509785200. PubMed DOI
Eickman NC; Solomon EI; Larrabee JA; Spiro TG; Lerch K Ultraviolet Resonance Raman Study of Oxytyrosinase. Comparison with Oxyhemocyanins 1978, 100,20,6529–6531
Kipouros I; Stańczak A; Culka M; Andris E; Machonkin TR; Rulíšek L; Solomon EI Evidence for H-Bonding Interactions to the μ-η 2 :η 2 -Peroxide of Oxy-Tyrosinase That Activate Its Coupled Binuclear Copper Site. Chem. Commun 2022, 58 (24), 3913–3916. 10.1039/D2CC00750A. PubMed DOI PMC
Himmelwright RS; Eickman NC; LuBien CD; Solomon EI; Lerch K Chemical and Spectroscopic Studies of the Binuclear Copper Active Site of Neurospora Tyrosinase: Comparison to Hemocyanins. Journal of the American Chemical Society 1980, 102 (24), 7339–7344. 10.1021/ja00544a031. DOI
Ross PK; Solomon EI An Electronic Structural Comparison of Copper-Peroxide Complexes of Relevance to Hemocyanin and Tyrosinase Active Sites. J. Am. Chem. Soc 1991, 113 (9), 3246–3259. 10.1021/ja00009a005. DOI
Yamazaki S; Itoh S Kinetic Evaluation of Phenolase Activity of Tyrosinase Using Simplified Catalytic Reaction System. J. Am. Chem. Soc 2003, 125 (43), 13034–13035. 10.1021/ja036425d. PubMed DOI
Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI Elucidation of the Tyrosinase/O2 /Monophenol Ternary Intermediate That Dictates the Monooxygenation Mechanism in Melanin Biosynthesis. Proc. Natl. Acad. Sci. U.S.A 2022, 119 (33), e2205619119. 10.1073/pnas.2205619119. PubMed DOI PMC
Matoba Y; Kihara S; Bando N; Yoshitsu H; Sakaguchi M; Kayama K; Yanagisawa S; Ogura T; Sugiyama M Catalytic Mechanism of the Tyrosinase Reaction toward the Tyr98 Residue in the Caddie Protein. PLoS Biol 2018, 16 (12), e3000077. 10.1371/journal.pbio.3000077. PubMed DOI PMC
Siegbahn PEM The Catalytic Cycle of Tyrosinase: Peroxide Attack on the Phenolate Ring Followed by O-O Bond Cleavage. J Biol Inorg Chem 2003, 8 (5), 567–576. 10.1007/s00775-003-0449-4. PubMed DOI
Inoue T; Shiota Y; Yoshizawa K Quantum Chemical Approach to the Mechanism for the Biological Conversion of Tyrosine to Dopaquinone. J. Am. Chem. Soc 2008, 130 (50), 16890–16897. 10.1021/ja802618s. PubMed DOI
Kampatsikas I; Rompel A Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type‐III Copper Enzymes? ChemBioChem 2021, 22 (7), 1161–1175. 10.1002/cbic.202000647. PubMed DOI PMC
Decker H; Solem E; Tuczek F Are Glutamate and Asparagine Necessary for Tyrosinase Activity of Type-3 Copper Proteins? Inorganica Chimica Acta 2018, 481, 32–37. 10.1016/j.ica.2017.11.031. DOI
Siegbahn PEM; Borowski T Comparison of QM-Only and QM/MM Models for the Mechanism of Tyrosinase. Faraday Discuss 2011, 148, 109–117. 10.1039/C004378H. PubMed DOI
Kipouros I; Solomon EI New Mechanistic Insights into Coupled Binuclear Copper Monooxygenases from the Recent Elucidation of the Ternary Intermediate of Tyrosinase. FEBS Letters 2023, 597 (1), 65–78. 10.1002/1873-3468.14503. PubMed DOI PMC
Siegbahn PEM; Wirstam M Is the Bis-μ-Oxo Cu 2 (III,III) State an Intermediate in Tyrosinase? J. Am. Chem. Soc 2001, 123 (47), 11819–11820. 10.1021/ja010829t. PubMed DOI
Keown W; Gary JB; Stack TDP High-Valent Copper in Biomimetic and Biological Oxidations. J Biol Inorg Chem 2017, 22 (2–3), 289–305. 10.1007/s00775-016-1420-5. PubMed DOI PMC
Muñoz-Muñoz JL; Berna J; García-Molina M. del M.; Garcia-Molina F; Garcia-Ruiz PA; Varon R; Rodriguez-Lopez JN; Garcia-Canovas F Hydroxylation of P-Substituted Phenols by Tyrosinase: Further Insight into the Mechanism of Tyrosinase Activity. Biochemical and Biophysical Research Communications 2012, 424 (2), 228–233. 10.1016/j.bbrc.2012.06.074. PubMed DOI
Company A; Palavicini S; Garcia-Bosch I; Mas-Ballesté R; Que L; Rybak-Akimova EV; Casella L; Ribas X; Costas M Tyrosinase-Like Reactivity in a CuIII2(μ-O)2 Species. Chem. Eur. J 2008, 14 (12), 3535–3538. 10.1002/chem.200800229. PubMed DOI
Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TDP Tyrosinase Reactivity in a Model Complex: An Alternative Hydroxylation Mechanism. Science 2005, 308 (5730), 1890–1892. 10.1126/science.1112081. PubMed DOI
Solem E; Tuczek F; Decker H Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference. Angewandte Chemie International Edition 2016, 55 (8), 2884–2888. 10.1002/anie.201508534. PubMed DOI
Prexler SM; Frassek M; Moerschbacher BM; Dirks‐Hofmeister ME Catechol Oxidase versus Tyrosinase Classification Revisited by Site‐Directed Mutagenesis Studies. Angew. Chem. Int. Ed 2019, 58 (26), 8757–8761. 10.1002/anie.201902846. PubMed DOI
Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S Copper–Oxygen Dynamics in the Tyrosinase Mechanism. Angew. Chem. Int. Ed 2020, 59 (32), 13385–13390. 10.1002/anie.202004733. PubMed DOI
Goldfeder M; Kanteev M; Isaschar-Ovdat S; Adir N; Fishman A Determination of Tyrosinase Substrate-Binding Modes Reveals Mechanistic Differences between Type-3 Copper Proteins. Nat Commun 2014, 5 (1), 4505. 10.1038/ncomms5505. PubMed DOI
Kampatsikas I; Pretzler M; Rompel A Identification of Amino Acid Residues Responsible for C−H Activation in Type‐III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase. Angew. Chem. Int. Ed 2020, 59 (47), 20940–20945. 10.1002/anie.202008859. PubMed DOI PMC
Hansch Corwin.; Leo A; Taft RW A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev 1991, 91 (2), 165–195. 10.1021/cr00002a004. DOI
Maldonado-Domínguez M; Bím D; Fučík R; Čurík R; Srnec M Reactive Mode Composition Factor Analysis of Transition States: The Case of Coupled Electron–Proton Transfers. Phys. Chem. Chem. Phys 2019, 21 (45), 24912–24918. 10.1039/C9CP05131G. PubMed DOI
Warren JJ; Tronic TA; Mayer JM Thermochemistry of Proton-Coupled Electron Transfer Reagents and Its Implications. Chem. Rev 2010, 110 (12), 6961–7001. 10.1021/cr100085k. PubMed DOI PMC
Osako T; Ohkubo K; Taki M; Tachi Y; Fukuzumi S; Itoh S Oxidation Mechanism of Phenols by Dicopper-Dioxygen (Cu2/O2) Complexes. Journal of the American Chemical Society 2003, 125, 11027–11033. PubMed
Hoffmann A; Citek C; Binder S; Goos A; Rübhausen M; Troeppner O; Ivanović-Burmazović I; Wasinger EC; Stack TDP; Herres-Pawlis S Catalytic Phenol Hydroxylation with Dioxygen: Extension of the Tyrosinase Mechanism beyond the Protein Matrix. Angew. Chem. Int. Ed 2013, 52 (20), 5398–5401. 10.1002/anie.201301249. PubMed DOI PMC