Coupled Binuclear Copper Sites in Biology: An Experimentally-Calibrated Computational Perspective
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 DK031450
NIDDK NIH HHS - United States
R37 DK031450
NIDDK NIH HHS - United States
PubMed
40896744
PubMed Central
PMC12393791
DOI
10.1016/j.ccr.2024.216301
PII: 216301
Knihovny.cz E-zdroje
- Klíčová slova
- QM/MM modeling, Structure/Function Correlations, WFT & DFT, [Cu2O2] active sites, coupled binuclear Cu(CBC), kinetics, spectroscopy,
- Publikační typ
- časopisecké články MeSH
The broad class of O2-activating coupled-binuclear copper (CBC) metalloenzymes contain a unique [Cu2O2] catalytic core. This core is responsible for catalyzing challenging biochemical transformations, particularly the regioselective monooxygenations/oxidations of substituted phenols. Despite almost four decades of intense experimental and theoretical research, the factors governing the diverse reactivity of CBC enzymes had remained only partially understood. In this review, we highlight the recent synergy between spectroscopy, kinetic experiments, and state-of-the-art computations (including hybrid quantum and molecular mechanical, QM/MM, and advanced wave function theory, WFT, methods) that provided a conclusive mechanistic picture of the initial stages of the ortho-hydroxylation of phenolic substrates catalyzed by the CBC enzyme tyrosinase (Ty). We emphasize the power of calibrated theoretical calculations, supported by experimental spectroscopic and kinetic data on intermediates, in providing definitive insight into the catalytic reaction coordinate. We provide a critical review of previous efforts towards elucidating structure-function correlations over the four CBC protein classes (hemocyanins, catechol oxidases, tyrosinases, o-aminophenol oxygenases). We outline how a systematic mechanistic understanding across the different CBC enzyme classes could uncover their elusive structure-function correlations, opening new possibilities for utilizing the [Cu2O2] catalytic core outside its native biological context for applications in materials and biocatalysis.
Zobrazit více v PubMed
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L, Copper Active Sites in Biology, Chem. Rev, 114 (2014) 3659–3853, 10.1021/cr400327t. PubMed DOI PMC
Rokob TA, Srnec M, Rulíšek L, Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives, Dalt. Trans, 41 (2012) 5754–5768, 10.1039/C2DT12423H. PubMed DOI
Ryde U, Chapter Six - QM/MM Calculations on Proteins, in: Voth GA (Ed.) Methods Enzymol., Academic Press, 2016, pp. 119–158. PubMed
Brandenburg JG, Burke K, Civalleri B, Cole DJ, Csányi G, David G, Gidopoulos NI, Gowland D, Helgaker T, Herbst MF, Hourahine B, Irons TJP, Jacob CR, Loos P-F, Mehta N, Mulay MR, Neugebauer J, Pernal K, Pribram-Jones A, Romaniello P, Ryder MR, Savin A, Sirbu D, Skylaris C-K, Truhlar DG, Wetherell J, Yang W, Challenges for large scale simulation: general discussion, Faraday Discuss., 224 (2020) 309–332, 10.1039/D0FD90024A. PubMed DOI
Himo F, Recent Trends in Quantum Chemical Modeling of Enzymatic Reactions, J. Am. Chem. Soc, 139 (2017) 6780–6786, 10.1021/jacs.7b02671. PubMed DOI
Siegbahn PEM, Blomberg MRA, A Systematic DFT Approach for Studying Mechanisms of Redox Active Enzymes, Front. Chem, 6 (2018), 10.3389/fchem.2018.00644. PubMed DOI PMC
Siegbahn PEM, A quantum chemical approach for the mechanisms of redox-active metalloenzymes, RSC Adv., 11 (2021) 3495–3508, 10.1039/D0RA10412D. PubMed DOI PMC
Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB, Copper–Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity, Chem. Rev, 117 (2017) 2059–2107, 10.1021/acs.chemrev.6b00636. PubMed DOI PMC
Quist DA, Diaz DE, Liu JJ, Karlin KD, Activation of dioxygen by copper metalloproteins and insights from model complexes, J. Biol. Inorg. Chem, 22 (2017) 253–288, 10.1007/s00775-016-1415-2. PubMed DOI PMC
Fukuzumi S, Karlin KD, Kinetics and thermodynamics of formation and electron-transfer reactions of Cu–O2 and Cu2–O2 complexes, Coord. Chem. Rev, 257 (2013) 187–195, 10.1016/j.ccr.2012.05.031. PubMed DOI PMC
Kipouros I, Stańczak A, Culka M, Andris E, Machonkin TR, Rulíšek L, Solomon EI, Evidence for H-bonding interactions to the μ-η2:η2-peroxide of oxy-tyrosinase that activate its coupled binuclear copper site, Chem. Commun, 58 (2022) 3913–3916, 10.1039/D2CC00750A. PubMed DOI PMC
Kipouros I, Stańczak A, Ginsbach JW, Andrikopoulos PC, Rulíšek L, Solomon EI, Elucidation of the tyrosinase/O2/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis, Proc. Natl. Acad. Sci, 119 (2022) e2205619119, 10.1073/pnas.2205619119. PubMed DOI PMC
Kipouros I, Stańczak A, Dunietz EM, Ginsbach JW, Srnec M, Rulíšek L, Solomon EI, Experimental Evidence and Mechanistic Description of the Phenolic H-Transfer to the Cu2O2 Active Site of oxy-Tyrosinase, J. Am. Chem. Soc, 145 (2023) 22866–22870, 10.1021/jacs.3c07450. PubMed DOI PMC
Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M, Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis*, J. Biol. Chem, 281 (2006) 8981–8990, 10.1074/jbc.M509785200. PubMed DOI
Senn HM, Thiel W, QM/MM Methods for Biomolecular Systems, Angew. Chem. Int. Ed, 48 (2009) 1198–1229, 10.1002/anie.200802019. PubMed DOI
Quesne MG, Borowski T, de Visser SP, Quantum Mechanics/Molecular Mechanics Modeling of Enzymatic Processes: Caveats and Breakthroughs, Eur. J. Chem, 22 (2016) 2562–2581, 10.1002/chem.201503802. PubMed DOI
Cao L, Caldararu O, Ryde U, Protonation States of Homocitrate and Nearby Residues in Nitrogenase Studied by Computational Methods and Quantum Refinement, J. Phys. Chem. B, 121 (2017) 8242–8262, 10.1021/acs.jpcb.7b02714. PubMed DOI
Bergmann J, Oksanen E, Ryde U, Combining crystallography with quantum mechanics, Curr. Opin. Struct. Biol, 72 (2022) 18–26, 10.1016/j.sbi.2021.07.002. PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D, Highly accurate protein structure prediction with AlphaFold, Nature, 596 (2021) 583–589, 10.1038/s41586-021-03819-2. PubMed DOI PMC
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, Bodenstein SW, Evans DA, Hung C-C, O’Neill M, Reiman D, Tunyasuvunakool K, Wu Z, Žemgulytė A, Arvaniti E, Beattie C, Bertolli O, Bridgland A, Cherepanov A, Congreve M, Cowen-Rivers AI, Cowie A, Figurnov M, Fuchs FB, Gladman H, Jain R, Khan YA, Low CMR, Perlin K, Potapenko A, Savy P, Singh S, Stecula A, Thillaisundaram A, Tong C, Yakneen S, Zhong ED, Zielinski M, Žídek A, Bapst V, Kohli P, Jaderberg M, Hassabis D, Jumper JM, Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature, 630 (2024) 493–500, 10.1038/s41586-024-07487-w. PubMed DOI PMC
Chen S-L, Marino T, Fang W-H, Russo N, Himo F, Peptide Hydrolysis by the Binuclear Zinc Enzyme Aminopeptidase from Aeromonas proteolytica: A Density Functional Theory Study, J. Phys. Chem. B, 112 (2008) 2494–2500, 10.1021/jp710035j. PubMed DOI
Klusák V, Bařinka C, Plechanovová A, Mlčochová P, Konvalinka J, Rulíšek L, Lubkowski J, Reaction Mechanism of Glutamate Carboxypeptidase II Revealed by Mutagenesis, X-ray Crystallography, and Computational Methods, Biochemistry, 48 (2009) 4126–4138, 10.1021/bi900220s. PubMed DOI PMC
Chaturvedi SS, Bím D, Christov CZ, Alexandrova AN, From random to rational: improving enzyme design through electric fields, second coordination sphere interactions, and conformational dynamics, Chem. Sci, 14 (2023) 10997–11011, 10.1039/D3SC02982D. PubMed DOI PMC
Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K, ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition, J. Phys. Chem , 100 (1996) 19357–19363, 10.1021/jp962071j. DOI
Bím D, Navrátil M, Gutten O, Konvalinka J, Kutil Z, Culka M, Navrátil V, Alexandrova AN, Bařinka C, Rulíšek L, Predicting Effects of Site-Directed Mutagenesis on Enzyme Kinetics by QM/MM and QM Calculations: A Case of Glutamate Carboxypeptidase II, J. Phys. Chem. B, 126 (2022) 132–143, 10.1021/acs.jpcb.1c09240. PubMed DOI
Hu L, Söderhjelm P, Ryde U, On the Convergence of QM/MM Energies, J. Chem. Theory Comput, 7 (2011) 761–777, 10.1021/ct100530r. PubMed DOI
We use L1/BS1//L2/BS2 standard notation to indicate that geometry optimization was done at the level (method) L2, employing basis set BS2 whereas single-point calculations were carried out at the level L1 using basis set BS1.
Antal R, Staś M, Perdomo SM, Štemberová M, Brůža Z, Matouš P, Kratochvíl J, Růžička A, Rulíšek L, Kuneš J, Kočovský P, Andris E, Pour M, Synthesis of highly polarized [3]dendralenes and their Diels–Alder reactions, Org. Chem. Front, 10 (2023) 5568–5578, 10.1039/D3QO01221B. DOI
Štěpánová S, Andris E, Gutten O, Buděšínský M, Dejmek M, Břehová P, Rulíšek L, Kašička V, Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy, Electrophoresis, 45 (2024) 687–705, 10.1002/elps.202300232. PubMed DOI
Pracht P, Bohle F, Grimme S, Automated exploration of the low-energy chemical space with fast quantum chemical methods, Phys. Chem. Chem. Phys, 22 (2020) 7169–7192, 10.1039/C9CP06869D. PubMed DOI
Cramer CJ, Essentials of Computational Chemistry: Theories and Models, Wiley, 2005.
Jensen F, Introduction to Computational Chemistry, Wiley, 2017.
Tzeliou CE, Mermigki MA, Tzeli D, Review on the QM/MM Methodologies and Their Application to Metalloproteins, Molecules, 27 (2022) 2660, 10.3390/molecules27092660. PubMed DOI PMC
Ahmadi S, Barrios Herrera L, Chehelamirani M, Hostaš J, Jalife S, Salahub DR, Multiscale modeling of enzymes: QM-cluster, QM/MM, and QM/MM/MD: A tutorial review, Int. J. Quantum Chem, 118 (2018) e25558, 10.1002/qua.25558. DOI
Kuang M, Zhou J, Wang L, Liu Z, Guo J, Wu R, Binding Kinetics versus Affinities in BRD4 Inhibition, J. Chem. Inf. Model, 55 (2015) 1926–1935, 10.1021/acs.jcim.5b00265. PubMed DOI
Sousa SF, Ribeiro AJM, Neves RPP, Brás NF, Cerqueira NMFSA, Fernandes PA, Ramos MJ, Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms, Wiley Interdiscip. Rev. Comput. Mol. Sci, 7 (2017) e1281, 10.1002/wcms.1281. DOI
Wu R, Hu P, Wang S, Cao Z, Zhang Y, Flexibility of Catalytic Zinc Coordination in Thermolysin and HDAC8: A Born−Oppenheimer ab Initio QM/MM Molecular Dynamics Study, J. Chem. Theory Comput, 6 (2010) 337–343, 10.1021/ct9005322. PubMed DOI PMC
Makurat S, Neves RPP, Ramos MJ, Rak J, QM/MM MD Study on the Reaction Mechanism of Thymidine Phosphorylation Catalyzed by the Enzyme Thermotoga maritima Thymidine Kinase 1, ACS Catal., 14 (2024) 9840–9849, 10.1021/acscatal.4c01867. DOI
Mulashkina TI, Kulakova AM, Khrenova MG, Molecular Basis of the Substrate Specificity of Phosphotriesterase from Pseudomonas diminuta: A Combined QM/MM MD and Electron Density Study, J. Chem. Inf. Model, 64 (2024) 7035–7045, 10.1021/acs.jcim.4c00425. PubMed DOI
Sit PHL, Migliore A, Ho M-H, Klein ML, Quantum Mechanical and Quantum Mechanical/Molecular Mechanical Studies of the Iron−Dioxygen Intermediates and Proton Transfer in Superoxide Reductase, J. Chem. Theory Comput, 6 (2010) 2896–2909, 10.1021/ct900599q. PubMed DOI
Eickman NC, Solomon EI, Larrabee JA, Spiro TG, Lerch K, Ultraviolet resonance Raman study of oxytyrosinase. Comparison with oxyhemocyanins, J. Am. Chem. Soc, 100 (1978) 6529–6531, 10.1021/ja00488a059. DOI
Himmelwright RS, Eickman NC, LuBien CD, Solomon EI, Lerch K, Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins, J. Am. Chem. Soc, 102 (1980) 7339–7344, 10.1021/ja00544a031. DOI
Woolery GL, Powers L, Winkler M, Solomon EI, Lerch K, Spiro TG, Extended X-ray absorption fine structure study of the coupled binuclear copper active site of tyrosinase from Neurospora crassa, Biochim. Biophys. Acta, 788 (1984) 155–161, 10.1016/0167-4838(84)90257-7. PubMed DOI
Baldwin MJ, Ross PK, Pate JE, Tyeklar Z, Karlin KD, Solomon EI, Spectroscopic and theoretical studies of an end-on peroxide-bridged coupled binuclear copper(II) model complex of relevance to the active sites in hemocyanin and tyrosinase, J. Am. Chem. Soc, 113 (1991) 8671–8679, 10.1021/ja00023a014. DOI
Liakos DG, Neese F, Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The (Cu2O2)2+ Core Revisited, J. Chem. Theory Comput, 7 (2011) 1511–1523, 10.1021/ct1006949. PubMed DOI
Neese F, Liakos DG, Ye S, Correlated wavefunction methods in bioinorganic chemistry, J. Biol. Inorg. Chem, 16 (2011) 821–829, 10.1007/s00775-011-0787-6. PubMed DOI
Gherman BF, Cramer CJ, Quantum chemical studies of molecules incorporating a Cu2O22+ core, Coord. Chem. Rev, 253 (2009) 723–753, 10.1016/j.ccr.2007.11.018. DOI
Harvey JN, The coupled-cluster description of electronic structure: perspectives for bioinorganic chemistry, J. Biol. Inorg. Chem, 16 (2011) 831–839, 10.1007/s00775-011-0786-7. PubMed DOI
Ghosh A, Ab initio wavefunctions in bioinorganic chemistry: More than a succès d’estime?, J. Biol. Inorg. Chem, 16 (2011) 819–820, 10.1007/s00775-011-0816-5. PubMed DOI PMC
Cramer CJ, Włoch M, Piecuch P, Puzzarini C, Gagliardi L, Theoretical Models on the Cu2O2 Torture Track: Mechanistic Implications for Oxytyrosinase and Small-Molecule Analogues, J. Phys. Chem. A, 110 (2006) 1991–2004, 10.1021/jp056791e. PubMed DOI
Lewin JL, Heppner DE, Cramer CJ, Validation of density functional modeling protocols on experimental bis(μ-oxo)/μ-η2:η2-peroxo dicopper equilibria, J. Biol. Inorg. Chem, 12 (2007) 1221–1234, 10.1007/s00775-007-0290-2. PubMed DOI
Kurashige Y, Chalupský J, Lan TN, Yanai T, Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group, J. Chem. Phys, 141 (2014) 174111, 10.1063/1.4900878. PubMed DOI
Marti KH, Ondík IM, Moritz G, Reiher M, Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters, J. Chem. Phys, 128 (2008), 10.1063/1.2805383. PubMed DOI
Shamasundar KR, Knizia G, Werner HJ, A new internally contracted multi-reference configuration interaction method, J. Chem. Phys, 135 (2011) 054101, 10.1063/1.3609809. PubMed DOI
Phung QM, Wouters S, Pierloot K, Cumulant Approximated Second-Order Perturbation Theory Based on the Density Matrix Renormalization Group for Transition Metal Complexes: A Benchmark Study, J. Chem. Theory Comput, 12 (2016) 4352–4361, 10.1021/acs.jctc.6b00714. PubMed DOI
Stańczak A, Chalupský J, Rulíšek L, Straka M, Comprehensive Theoretical View of the [Cu2O2] Side-on-Peroxo-/Bis-μ-Oxo Equilibria, ChemPhysChem, 23 (2022) e202200076, 10.1002/cphc.202200076. PubMed DOI
Langhoff SR, Davidson ER, Configuration interaction calculations on the nitrogen molecule, Int. J. Quantum Chem, 8 (1974) 61–72, 10.1002/qua.560080106. DOI
Varela Lambraño R, Vivas-Reyes R, Visbal R, Zapata-Rivera J, Evaluation of the electronic structure and charge transfer in the Cu2O22+ core using multiconfigurational methods, Theor. Chem. Acc, 139 (2020) 56, 10.1007/s00214-020-2570-7. DOI
Bartlett RJ, Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry, J. Phys. Chem, 93 (1989) 1697–1708, 10.1021/j100342a008 DOI
Besalú-Sala P, Magallón C, Costas M, Company A, Luis JM, Mechanistic Insights into the ortho-Defluorination-Hydroxylation of 2-Halophenolates Promoted by a Bis(μ-oxo)dicopper(III) Complex, Inorg. Chem, 59 (2020) 17018–17027, 10.1021/acs.inorgchem.0c02246. PubMed DOI
Liakos DG, Guo Y, Neese F, Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems, J. Phys. Chem. A, 124 (2020) 90–100, 10.1021/acs.jpca.9b05734. PubMed DOI
Zou J, Wang Q, Ren X, Wang Y, Zhang H, Li S, Efficient Implementation of Block-Correlated Coupled Cluster Theory Based on the Generalized Valence Bond Reference for Strongly Correlated Systems, J. Chem. Theory Comput, 18 (2022) 5276–5285, 10.1021/acs.jctc.2c00445. PubMed DOI
Harvey JN, Aschi M, Modelling spin-forbidden reactions: recombination of carbon monoxide with iron tetracarbonyl, Faraday Discuss., 124 (2003) 129–143, 10.1039/B211871H. PubMed DOI
Petit AS, Pennifold RCR, Harvey JN, Electronic Structure and Formation of Simple Ferryloxo Complexes: Mechanism of the Fenton Reaction, Inorg. Chem, 53 (2014) 6473–6481, 10.1021/ic500379r. PubMed DOI
Phung QM, Martín-Fernández C, Harvey JN, Feldt M, Ab Initio Calculations for Spin-Gaps of Non-Heme Iron Complexes, J. Chem. Theory Comput, 15 (2019) 4297–4304, 10.1021/acs.jctc.9b00370. PubMed DOI
Witte M, Herres-Pawlis S, Relativistic effects at the Cu2O2 core – a density functional theory study, Phys. Chem. Chem. Phys, 19 (2017) 26880–26889, 10.1039/C7CP04686C. PubMed DOI
Peng D, Reiher M, Exact decoupling of the relativistic Fock operator, Theor. Chem. Acc, 131 (2012) 1081, 10.1007/s00214-011-1081-y. DOI
Phung QM, Feldt M, Harvey JN, Pierloot K, Toward Highly Accurate Spin State Energetics in First-Row Transition Metal Complexes: A Combined CASPT2/CC Approach, J. Chem. Theory Comput, 14 (2018) 2446–2455, 10.1021/acs.jctc.8b00057. PubMed DOI
Radoń M, Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data, Phys. Chem. Chem. Phys, 21 (2019) 4854–4870, 10.1039/C9CP00105K. PubMed DOI
Radoń M, Chapter Seven - Toward accurate spin-state energetics of transition metal complexes, in: van Eldik R, Puchta R (Eds.) Adv. Inorg. Chem, Academic Press, 2019, pp. 221–264.
Drabik G, Szklarzewicz J, Radoń M, Spin-state energetics of metallocenes: How do best wave function and density functional theory results compare with the experimental data?, Phys. Chem. Chem. Phys, 23 (2021) 151–172, 10.1039/D0CP04727A. PubMed DOI
Noodleman L, Valence bond description of antiferromagnetic coupling in transition metal dimers, J. Chem. Phys, 74 (1981) 5737–5743, 10.1063/1.440939. DOI
Noodleman L, Davidson ER, Ligand spin polarization and antiferromagnetic coupling in transition metal dimers, Chem. Phys, 109 (1986) 131–143, 10.1016/0301-0104(86)80192-6. DOI
Chalupský J, Srnec M, Yanai T, Interpretation of Exchange Interaction through Orbital Entanglement, J. Phys. Chem. Lett, 12 (2021) 1268–1274, 10.1021/acs.jpclett.0c03652. PubMed DOI
Dai D, Whangbo M-H, Spin exchange interactions of a spin dimer: Analysis of broken-symmetry spin states in terms of the eigenstates of Heisenberg and Ising spin Hamiltonians, J. Chem. Phys, 118 (2003) 29–39, 10.1063/1.1525809. DOI
Pantazis DA, Meeting the Challenge of Magnetic Coupling in a Triply-Bridged Chromium Dimer: Complementary Broken-Symmetry Density Functional Theory and Multireference Density Matrix Renormalization Group Perspectives, J. Chem. Theory Comput, 15 (2019) 938–948, 10.1021/acs.jctc.8b00969. PubMed DOI PMC
Massolle A, Neugebauer J, Subsystem density-functional theory for interacting open-shell systems: spin densities and magnetic exchange couplings, Faraday Discuss., 224 (2020) 201–226, 10.1039/D0FD00063A. PubMed DOI
Nishino M, Yamanaka S, Yoshioka Y, Yamaguchi K, Theoretical Approaches to Direct Exchange Couplings between Divalent Chromium Ions in Naked Dimers, Tetramers, and Clusters, J. Phys. Chem. A, 101 (1997) 705–712, 10.1021/jp962091l. DOI
Ruiz E, Cano J, Alvarez S, Alemany P, Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes, J. Comput. Chem, 20 (1999) 1391–1400, 10.1002/(SICI)1096-987X(199910)20:13<1391::AID-JCC6>3.0.CO;2-J. DOI
Singh G, Gamboa S, Orio M, Pantazis DA, Roemelt M, Magnetic exchange coupling in Cu dimers studied with modern multireference methods and broken-symmetry coupled cluster theory, Theor. Chem. Acc, 140 (2021) 139, 10.1007/s00214-021-02830-0. DOI
Dirac PAM, Fowler RH, Quantum mechanics of many-electron systems, Proc. R. Soc. Lond. A Math. Phys. Sci, 123 (1929) 714–733, 10.1098/rspa.1929.0094. DOI
Slater JC, A Simplification of the Hartree-Fock Method, Phys. Rev, 81 (1951) 385–390, 10.1103/PhysRev.81.385. DOI
Becke AD, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38 (1988) 3098–3100, 10.1103/PhysRevA.38.3098. PubMed DOI
Becke AD, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys, 98 (1993) 5648–5652, 10.1063/1.464913. DOI
Vosko SH, Wilk L, Nusair M, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys, 58 (1980) 1200–1211, 10.1139/p80-159. DOI
Lee C, Yang W, Parr RG, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37 (1988) 785–789, 10.1103/PhysRevB.37.785. PubMed DOI
Szilagyi RK, Metz M, Solomon EI, Spectroscopic Calibration of Modern Density Functional Methods Using [CuCl4]2, J. Phys. Chem. A, 106 (2002) 2994–3007, 10.1021/jp014121c. DOI
Perdew JP, Wang Y, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 45 (1992) 13244–13249, 10.1103/PhysRevB.45.13244. PubMed DOI
Tao J, Perdew JP, Staroverov VN, Scuseria GE, Climbing the Density Functional Ladder: Nonempirical Meta--Generalized Gradient Approximation Designed for Molecules and Solids, Phys. Rev. Lett, 91 (2003) 146401, 10.1103/PhysRevLett.91.146401. PubMed DOI
Weigend F, Ahlrichs R, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys, 7 (2005) 3297–3305, 10.1039/B508541A. PubMed DOI
Staroverov VN, Scuseria GE, Tao J, Perdew JP, Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes, J. Chem. Phys, 119 (2003) 12129–12137, 10.1063/1.1626543. DOI
Kieber-Emmons MT, Ginsbach JW, Wick PK, Lucas HR, Helton ME, Lucchese B, Suzuki M, Zuberbühler AD, Karlin KD, Solomon EI, Observation of a CuII2(μ−1,2-peroxo)/CuIII2(μ-oxo)2 Equilibrium and its Implications for Copper–Dioxygen Reactivity, Angew. Chem. Int. Ed, 53 (2014) 4935–4939, 10.1002/anie.201402166. PubMed DOI PMC
Paul M, Teubner M, Grimm-Lebsanft B, Golchert C, Meiners Y, Senft L, Keisers K, Liebhäuser P, Rösener T, Biebl F, Buchenau S, Naumova M, Murzin V, Krug R, Hoffmann A, Pietruszka J, Ivanović-Burmazović I, Rübhausen M, Herres-Pawlis S, Exceptional Substrate Diversity in Oxygenation Reactions Catalyzed by a Bis(μ-oxo) Copper Complex, Eur. J. Chem, 26 (2020) 7556–7562, 10.1002/chem.202000664. PubMed DOI PMC
Dalhoff R, Schmidt R, Steeb L, Rabatinova K, Witte M, Teeuwen S, Benjamaâ S, Hüppe H, Hoffmann A, Herres-Pawlis S, The bridge towards a more stable and active side-on-peroxido (Cu2II(μ-η2:η2-O2)) complex as a tyrosinase model system, Faraday Discuss., 244 (2023) 134–153, 10.1039/D2FD00162D. PubMed DOI
Gagliardi L, Truhlar DG, Li Manni G, Carlson RK, Hoyer CE, Bao JL, Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems, Acc. Chem. Res, 50 (2017) 66–73, 10.1021/acs.accounts.6b00471. PubMed DOI
Li Manni G, Carlson RK, Luo S, Ma D, Olsen J, Truhlar DG, Gagliardi L, Multiconfiguration Pair-Density Functional Theory, J. Chem. Theory Comput, 10 (2014) 3669–3680, 10.1021/ct500483t. PubMed DOI
Carlson RK, Truhlar DG, Gagliardi L, Multiconfiguration Pair-Density Functional Theory: A Fully Translated Gradient Approximation and Its Performance for Transition Metal Dimers and the Spectroscopy of Re2Cl82–, J. Chem. Theory Comput, 11 (2015) 4077–4085, 10.1021/acs.jctc.5b00609. PubMed DOI
Bím D, Chalupský J, Culka M, Solomon EI, Rulíšek L, Srnec M, Proton–Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Δ9-Desaturase, J. Am. Chem. Soc, 142 (2020) 10412–10423, 10.1021/jacs.0c01786. PubMed DOI PMC
Mahajan A, Sharma S, Taming the Sign Problem in Auxiliary-Field Quantum Monte Carlo Using Accurate Wave Functions, J. Chem. Theory Comput, 17 (2021) 4786–4798, 10.1021/acs.jctc.1c00371. PubMed DOI
Hoffmann A, Herres-Pawlis S, Donor-driven conformational flexibility in a real-life catalytic dicopper(ii) peroxo complex, Phys. Chem. Chem. Phys, 18 (2016) 6430–6440, 10.1039/C5CP05009J. PubMed DOI
Rohrmüller M, Hoffmann A, Thierfelder C, Herres-Pawlis S, Schmidt WG, The Cu2O2 torture track for a real-life system: [Cu2(btmgp)2O2]2+ oxo and peroxo species in density functional calculations†, J. Comput. Chem, 36 (2015) 1672–1685, 10.1002/jcc.23983. PubMed DOI
Hoffmann A, Herres-Pawlis S, Hiking on the potential energy surface of a functional tyrosinase model – implications of singlet, broken-symmetry and triplet description, Chem. Commun, 50 (2014) 403–405, 10.1039/C3CC46893C. PubMed DOI
Rohrmüller M, Herres-Pawlis S, Witte M, Schmidt WG, Bis-μ-oxo and μ-η2:η2-peroxo dicopper complexes studied within (time-dependent) density-functional and many-body perturbation theory, J. Comput. Chem, 34 (2013) 1035–1045, 10.1002/jcc.23230. PubMed DOI
Qayyum MF, Sarangi R, Fujisawa K, Stack TDP, Karlin KD, Hodgson KO, Hedman B, Solomon EI, L-Edge X-ray Absorption Spectroscopy and DFT Calculations on Cu2O2 Species: Direct Electrophilic Aromatic Attack by Side-on Peroxo Bridged Dicopper(II) Complexes, J. Am. Chem. Soc, 135 (2013) 17417–17431, 10.1021/ja4078717. PubMed DOI PMC
Malmqvist PÅ, Pierloot K, Shahi ARM, Cramer CJ, Gagliardi L, The restricted active space followed by second-order perturbation theory method: Theory and application to the study of CuO2 and Cu2O2 systems, J. Chem. Phys, 128 (2008) 204109, 10.1063/1.2920188. PubMed DOI
Rode MF, Werner HJ, Ab initio study of the O2 binding in dicopper complexes, Theor. Chem. Acc, 114 (2005) 309–317, 10.1007/s00214-005-0692-6. DOI
Güell M, Luis JM, Solà M, Siegbahn PEM, Theoretical study of the hydroxylation of phenolates by the Cu2O2(N,N′-dimethylethylenediamine)22+ complex, J. Biol. Inorg. Chem, 14 (2009) 229–242, 10.1007/s00775-008-0443-y. PubMed DOI
Matoba Y, Kihara S, Bando N, Yoshitsu H, Sakaguchi M, Kayama K.e., Yanagisawa S, Ogura T, Sugiyama M, Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein, PLoS Biol., 16 (2019) e3000077, 10.1371/journal.pbio.3000077. PubMed DOI PMC
Herres-Pawlis S, Verma P, Haase R, Kang P, Lyons CT, Wasinger EC, Flörke U, Henkel G, Stack TDP, Phenolate Hydroxylation in a Bis(μ-oxo)dicopper(III) Complex: Lessons from the Guanidine/Amine Series, J. Am. Chem. Soc, 131 (2009) 1154–1169, 10.1021/ja807809x. PubMed DOI PMC
Inoue T, Shiota Y, Yoshizawa K, Quantum Chemical Approach to the Mechanism for the Biological Conversion of Tyrosine to Dopaquinone, J. Am. Chem. Soc, 130 (2008) 16890–16897, 10.1021/ja802618s. PubMed DOI
Jiang H, Lai W, Monophenolase and catecholase activity of Aspergillus oryzae catechol oxidase: insights from hybrid QM/MM calculations, Org. Biomol. Chem, 18 (2020) 5192–5202, 10.1039/D0OB00969E. PubMed DOI
Kipouros I, Solomon EI, New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase, FEBS Lett., 597 (2023) 65–78, 10.1002/1873-3468.14503. PubMed DOI PMC
Kitajima N, Fujisawa K, Morooka Y, Toriumi K, .mu.−.eta.2:.eta.2-Peroxo binuclear copper complex, [Cu(HB(3,5-(Me2CH)2pz)3)]2(O2), J. Am. Chem. Soc, 111 (1989) 8975–8976, 10.1021/ja00206a062. DOI
Baldwin MJ, Root DE, Pate JE, Fujisawa K, Kitajima N, Solomon EI, Spectroscopic studies of side-on peroxide-bridged binuclear copper(II) model complexes of relevance to oxyhemocyanin and oxytyrosinase, J. Am. Chem. Soc, 114 (1992) 10421–10431, 10.1021/ja00052a043. DOI
Pate JE, Cruse RW, Karlin KD, Solomon EI, Vibrational, electronic, and resonance Raman spectral studies of [Cu2(YXL-O-)O2]+, a copper(II) peroxide model complex of oxyhemocyanin, J. Am. Chem. Soc, 109 (1987) 2624–2630, 10.1021/ja00243a013. DOI
Hay PJ, Thibeault JC, Hoffmann R, Orbital interactions in metal dimer complexes, J. Am. Chem. Soc, 97 (1975) 4884–4899, 10.1021/ja00850a018. DOI
Dooley DM, Scott RA, Ellinghaus J, Solomon EI, Gray HB, Magnetic susceptibility studies of laccase and oxyhemocyanin, Proc. Natl. Acad. Sci, 75 (1978) 3019–3022, 10.1073/pnas.75.7.3019. PubMed DOI PMC
Ross PK, Solomon EI, An electronic structural comparison of copper-peroxide complexes of relevance to hemocyanin and tyrosinase active sites, J. Am. Chem. Soc, 113 (1991) 3246–3259, 10.1021/ja00009a005. DOI
Metz M, Solomon EI, Dioxygen Binding to Deoxyhemocyanin: Electronic Structure and Mechanism of the Spin-Forbidden Two-Electron Reduction of O2, J. Am. Chem. Soc, 123 (2001) 4938–4950, 10.1021/ja004166b. PubMed DOI
Barone V, Alessandrini S, Biczysko M, Cheeseman JR, Clary DC, McCoy AB, DiRisio RJ, Neese F, Melosso M, Puzzarini C, Computational molecular spectroscopy, Nat. Rev. Meth. Primers, 1 (2021) 38, 10.1038/s43586-021-00034-1. DOI
Henson MJ, Mahadevan V, Stack TDP, Solomon EI, A New Cu(II) Side-on Peroxo Model Clarifies the Assignment of the Oxyhemocyanin Raman Spectrum, Inorg. Chem, 40 (2001) 5068–5069, 10.1021/ic015539s. PubMed DOI
Klamt A, Schüürmann G, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans 2, (1993) 799–805, 10.1039/P29930000799. DOI
Solomon EI, Lever ABP, Inorganic Electronic Structure and Spectroscopy, Applications and Case Studies, Wiley, 1999.
Herres-Pawlis S, Haase R, Verma P, Hoffmann A, Kang P, Stack TDP, Formation of Hybrid Guanidine-Stabilized Bis(μ-oxo)dicopper Cores in Solution: Electronic and Steric Perturbations, Eur. J. Inorg. Chem, 2015 (2015) 5426–5436, 10.1002/ejic.201500884. PubMed DOI PMC
Lind T, Siegbahn PEM, Crabtree RH, A Quantum Chemical Study of the Mechanism of Tyrosinase, J. Phys. Chem. B, 103 (1999) 1193–1202, 10.1021/jp982321r. DOI
Siegbahn PEM, The catalytic cycle of catechol oxidase, J. Biol. Inorg. Chem, 9 (2004) 577–590, 10.1007/s00775-004-0551-2. PubMed DOI
Siegbahn PEM, Borowski T, Comparison of QM-only and QM/MM models for the mechanism of tyrosinase, Faraday Discuss., 148 (2011) 109–117, 10.1039/C004378H. PubMed DOI
Klabunde T, Eicken C, Sacchettini JC, Krebs B, Crystal structure of a plant catechol oxidase containing a dicopper center, Nat. Struct. Biol, 5 (1998) 1084–1090, 10.1038/4193. PubMed DOI
Gerdemann C, Eicken C, Krebs B, The Crystal Structure of Catechol Oxidase: New Insight into the Function of Type-3 Copper Proteins, Acc. Chem. Res, 35 (2002) 183–191, 10.1021/ar990019a. PubMed DOI
Fujieda N, Yabuta S, Ikeda T, Oyama T, Muraki N, Kurisu G, Itoh S, Crystal Structures of Copper-depleted and Copper-bound Fungal Pro-tyrosinase: INSIGHTS INTO ENDOGENOUS CYSTEINE-DEPENDENT COPPER INCORPORATION*, J. Biol. Chem, 288 (2013) 22128–22140, 10.1074/jbc.M113.477612. PubMed DOI PMC
Zou C, Huang W, Zhao G, Wan X, Hu X, Jin Y, Li J, Liu J, Determination of the Bridging Ligand in the Active Site of Tyrosinase, Molecules, 22 (2017) 1836, 10.3390/molecules22111836. PubMed DOI PMC
Bochot C, Gouron A, Bubacco L, Milet A, Philouze C, Réglier M, Serratrice G, Jamet H, Belle C, Probing kojic acid binding to tyrosinase enzyme: insights from a model complex and QM/MM calculations, Chem. Commun, 50 (2014) 308–310, 10.1039/C3CC47469K. PubMed DOI
Ginsbach JW, Kieber-Emmons MT, Nomoto R, Noguchi A, Ohnishi Y, Solomon EI, Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF, Proc. Natl. Acad. Sci, 109 (2012) 10793–10797, 10.1073/pnas.1208718109. PubMed DOI PMC
Deeth RJ, Diedrich C, Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations, J. Biol. Inorg. Chem, 15 (2010) 117–129, 10.1007/s00775-009-0577-6. PubMed DOI
Yoon J, Fujii S, Solomon EI, Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase, Proc. Natl. Acad. Sci, 106 (2009) 6585–6590, 10.1073/pnas.0902127106. PubMed DOI PMC
Güell M, Siegbahn PEM, Theoretical study of the catalytic mechanism of catechol oxidase, J. Biol. Inorg. Chem, 12 (2007) 1251–1264, 10.1007/s00775-007-0293-z. PubMed DOI
Siegbahn PEM, The catalytic cycle of tyrosinase: peroxide attack on the phenolate ring followed by O-O bond cleavage, J. Biol. Inorg. Chem, 8 (2003) 567–576, 10.1007/s00775-003-0449-4. PubMed DOI
Siegbahn PEM, Wirstam M, Is the Bis-μ-Oxo Cu2(III,III) State an Intermediate in Tyrosinase?, J. Am. Chem. Soc, 123 (2001) 11819–11820, 10.1021/ja010829t. PubMed DOI
Spada A, Palavicini S, Monzani E, Bubacco L, Casella L, Trapping tyrosinase key active intermediate under turnover, Dalt. Trans, (2009) 6468–6471, 10.1039/B911946A. PubMed DOI
Fujieda N, Umakoshi K, Ochi Y, Nishikawa Y, Yanagisawa S, Kubo M, Kurisu G, Itoh S, Copper–Oxygen Dynamics in the Tyrosinase Mechanism, Angew. Chem. Int. Ed, 59 (2020) 13385–13390, 10.1002/anie.202004733. PubMed DOI
Wilcox DE, Porras AG, Hwang YT, Lerch K, Winkler ME, Solomon EI, Substrate analog binding to the coupled binuclear copper active site in tyrosinase, J. Am. Chem. Soc, 107 (1985) 4015–4027, 10.1021/ja00299a043. DOI
Kaintz C, Mauracher SG, Rompel A, Chapter One - Type-3 Copper Proteins: Recent Advances on Polyphenol Oxidases, in: Christov CZ (Ed.) Advances in Protein Chemistry and Structural Biology, Academic Press, 2014, pp. 1–35. PubMed
Noguchi A, Kitamura T, Onaka H, Horinouchi S, Ohnishi Y, A copper-containing oxidase catalyzes C-nitrosation in nitrosobenzamide biosynthesis, Nat. Chem. Biol, 6 (2010) 641–643, 10.1038/nchembio.418. PubMed DOI
Pretzler M, Rompel A, What causes the different functionality in type-III-copper enzymes? A state of the art perspective, Inorg. Chim. Acta, 481 (2018) 25–31, 10.1016/j.ica.2017.04.041. DOI
Decker H, Solem E, Tuczek F, Are glutamate and asparagine necessary for tyrosinase activity of type-3 copper proteins?, Inorg. Chim. Acta, 481 (2018) 32–37, 10.1016/j.ica.2017.11.031. DOI
Aguilera F, McDougall C, Degnan BM, Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa, BMC Evol. Biol, 13 (2013) 96, 10.1186/1471-2148-13-96. PubMed DOI PMC
Prexler SM, Frassek M, Moerschbacher BM, Dirks-Hofmeister ME, Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies, Angew. Chem. Int. Ed, 58 (2019) 8757–8761, 10.1002/anie.201902846. PubMed DOI
Decker H, Hellmann N, Jaenicke E, Lieb B, Meissner U, Markl J, Minireview: Recent progress in hemocyanin research, Integr. Comp. Biol, 47 (2007) 631–644, 10.1093/icb/icm063. PubMed DOI
Magnus KA, Ton-That H, Carpenter JE, Recent Structural Work on the Oxygen Transport Protein Hemocyanin, Chem. Rev, 94 (1994) 727–735, 10.1021/cr00027a009. DOI
Suzuki K, Shimokawa C, Morioka C, Itoh S, Monooxygenase Activity of Octopus vulgaris Hemocyanin, Biochemistry, 47 (2008) 7108–7115, 10.1021/bi8002764. PubMed DOI
Baird S, Kelly SM, Price NC, Jaenicke E, Meesters C, Nillius D, Decker H, Nairn J, Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation, Biochim. Biophys. Acta, 1774 (2007) 1380–1394, 10.1016/j.bbapap.2007.08.019. PubMed DOI
Cong Y, Zhang Q, Woolford D, Schweikardt T, Khant H, Dougherty M, Ludtke SJ, Chiu W, Decker H, Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy, Structure, 17 (2009) 749–758, 10.1016/j.str.2009.03.005. PubMed DOI PMC
Fujieda N, Ikeda T, Murata M, Yanagisawa S, Aono S, Ohkubo K, Nagao S, Ogura T, Hirota S, Fukuzumi S, Nakamura Y, Hata Y, Itoh S, Post-Translational His-Cys Cross-Linkage Formation in Tyrosinase Induced by Copper(II)−Peroxo Species, J. Am. Chem. Soc, 133 (2011) 1180–1183, 10.1021/ja108280w. PubMed DOI
Hoffmann A, Citek C, Binder S, Goos A, Rübhausen M, Troeppner O, Ivanović-Burmazović I, Wasinger EC, Stack TDP, Herres-Pawlis S, Catalytic Phenol Hydroxylation with Dioxygen: Extension of the Tyrosinase Mechanism beyond the Protein Matrix, Angew. Chem. Int. Ed, 52 (2013) 5398–5401, 10.1002/anie.201301249. PubMed DOI PMC
Op’t Holt BT, Vance MA, Mirica LM, Heppner DE, Stack TDP, Solomon EI, Reaction Coordinate of a Functional Model of Tyrosinase: Spectroscopic and Computational Characterization, J. Am. Chem. Soc, 131 (2009) 6421–6438, 10.1021/ja807898h. PubMed DOI PMC
Goldfeder M, Kanteev M, Isaschar-Ovdat S, Adir N, Fishman A, Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins, Nat. Commun, 5 (2014) 4505, 10.1038/ncomms5505. PubMed DOI
Bijelic A, Pretzler M, Molitor C, Zekiri F, Rompel A, The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of “Substrate-Guiding Residues” for Enzymatic Specificity, Angew. Chem. Int. Ed, 54 (2015) 14677–14680, 10.1002/anie.201506994. PubMed DOI PMC
Solem E, Tuczek F, Decker H, Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference, Angew. Chem. Int. Ed, 55 (2016) 2884–2888, 10.1002/anie.201508534. PubMed DOI
Matoba Y, Oda K, Muraki Y, Masuda T, The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity, Int. J. Biol. Macromol, 183 (2021) 1861–1870, 10.1016/j.ijbiomac.2021.05.206. PubMed DOI
Panis F, Kampatsikas I, Bijelic A, Rompel A, Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis, Sci. Rep, 10 (2020) 1659, 10.1038/s41598-020-57671-x. PubMed DOI PMC
Simeonov DR, Wang X, Wang C, Sergeev Y, Dolinska M, Bower M, Fischer R, Winer D, Dubrovsky G, Balog JZ, Huizing M, Hart R, Zein WM, Gahl WA, Brooks BP, Adams DR, DNA Variations in Oculocutaneous Albinism: An Updated Mutation List and Current Outstanding Issues in Molecular Diagnostics, Hum. Mutat, 34 (2013) 827–835, 10.1002/humu.22315. PubMed DOI PMC
Kampatsikas I, Pretzler M, Rompel A, Identification of Amino Acid Residues Responsible for C−H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase, Angew. Chem. Int. Ed, 59 (2020) 20940–20945, 10.1002/anie.202008859. PubMed DOI PMC
Molitor C, Mauracher SG, Rompel A, Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases, Proc. Natl. Acad. Sci, 113 (2016) E1806–E1815, 10.1073/pnas.1523575113. PubMed DOI PMC
Pirro F, La Gatta S, Arrigoni F, Famulari A, Maglio O, Del Vecchio P, Chiesa M, De Gioia L, Bertini L, Chino M, Nastri F, Lombardi A, A De Novo-Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity, Angew. Chem. Int. Ed, 62 (2023) e202211552, 10.1002/anie.202211552. PubMed DOI
Jung S-M, Yang M, Song WJ, Symmetry-Adapted Synthesis of Dicopper Oxidases with Divergent Dioxygen Reactivity, Inorg. Chem, 61 (2022) 12433–12441, 10.1021/acs.inorgchem.2c01898. PubMed DOI
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang J-X, Zhou Y, Ledray AP, Lu Y, Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere, Chem. Rev, 122 (2022) 11974–12045, 10.1021/acs.chemrev.2c00106. PubMed DOI PMC
Mirica LM, Ottenwaelder X, Stack TDP, Structure and Spectroscopy of Copper−Dioxygen Complexes, Chem. Rev, 104 (2004) 1013–1046, 10.1021/cr020632z. PubMed DOI
Liebhäuser P, Keisers K, Hoffmann A, Schnappinger T, Sommer I, Thoma A, Wilfer C, Schoch R, Stührenberg K, Bauer M, Dürr M, Ivanović-Burmazović I, Herres-Pawlis S, Record Broken: A Copper Peroxide Complex with Enhanced Stability and Faster Hydroxylation Catalysis, Eur. J. Chem, 23 (2017) 12171–12183, 10.1002/chem.201700887. PubMed DOI
Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI, A [Cu PubMed DOI PMC
Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI, Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes, Chem. Rev, 118 (2018) 2718–2768, 10.1021/acs.chemrev.7b00344. PubMed DOI
Feng X, Song Y, Chen JS, Xu Z, Dunn SJ, Lin W, Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal–Organic Framework, J. Am. Chem. Soc, 143 (2021) 1107–1118, 10.1021/jacs.0c11920. PubMed DOI
Shen Q, Chen J, Jing X, Duan C, Polyoxometalate-Embedded Metal–Organic Framework as an Efficient Copper-Based Monooxygenase for C(sp3)–H Bond Oxidation via Multiphoton Excitation, ACS Catal., 13 (2023) 9969–9978, 10.1021/acscatal.3c02220. DOI