Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors

. 2023 Oct 13 ; 9 (10) : 1918-1931. [epub] 20230920

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid37728236

Grantová podpora
75N93022C00035 NIAID NIH HHS - United States
HHSN272201700060C NIAID NIH HHS - United States
P20 GM121176 NIGMS NIH HHS - United States
P30 CA060553 NCI NIH HHS - United States

A collaborative, open-science team undertook discovery of novel small molecule inhibitors of the SARS-CoV-2 nsp16-nsp10 2'-O-methyltransferase using a high throughput screening approach with the potential to reveal new inhibition strategies. This screen yielded compound 5a, a ligand possessing an electron-deficient double bond, as an inhibitor of SARS-CoV-2 nsp16 activity. Surprisingly, X-ray crystal structures revealed that 5a covalently binds within a previously unrecognized cryptic pocket near the S-adenosylmethionine binding cleft in a manner that prevents occupation by S-adenosylmethionine. Using a multidisciplinary approach, we examined the mechanism of binding of compound 5a to the nsp16 cryptic pocket and developed 5a derivatives that inhibited nsp16 activity and murine hepatitis virus replication in rat lung epithelial cells but proved cytotoxic to cell lines canonically used to examine SARS-CoV-2 infection. Our study reveals the druggability of this newly discovered SARS-CoV-2 nsp16 cryptic pocket, provides novel tool compounds to explore the site, and suggests a new approach for discovery of nsp16 inhibition-based pan-coronavirus therapeutics through structure-guided drug design.

Zobrazit více v PubMed

Corbett KS; Edwards DK; Leist SR; Abiona OM; Boyoglu-Barnum S; Gillespie RA; Himansu S; Schafer A; Ziwawo CT; DiPiazza AT; Dinnon KH; Elbashir SM; Shaw CA; Woods A; Fritch EJ; Martinez DR; Bock KW; Minai M; Nagata BM; Hutchinson GB; Wu K; Henry C; Bahl K; Garcia-Dominguez D; Ma L; Renzi I; Kong WP; Schmidt SD; Wang L; Zhang Y; Phung E; Chang LA; Loomis RJ; Altaras NE; Narayanan E; Metkar M; Presnyak V; Liu C; Louder MK; Shi W; Leung K; Yang ES; West A; Gully KL; Stevens LJ; Wang N; Wrapp D; Doria-Rose NA; Stewart-Jones G; Bennett H; Alvarado GS; Nason MC; Ruckwardt TJ; McLellan JS; Denison MR; Chappell JD; Moore IN; Morabito KM; Mascola JR; Baric RS; Carfi A; Graham BS SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586 (7830), 567–571. DOI: 10.1038/s41586-020-2622-0 From NLM Medline. PubMed DOI PMC

DeGrace MM; Ghedin E; Frieman MB; Krammer F; Grifoni A; Alisoltani A; Alter G; Amara RR; Baric RS; Barouch DH; Bloom JD; Bloyet LM; Bonenfant G; Boon ACM; Boritz EA; Bratt DL; Bricker TL; Brown L; Buchser WJ; Carreno JM; Cohen-Lavi L; Darling TL; Davis-Gardner ME; Dearlove BL; Di H; Dittmann M; Doria-Rose NA; Douek DC; Drosten C; Edara VV; Ellebedy A; Fabrizio TP; Ferrari G; Fischer WM; Florence WC; Fouchier RAM; Franks J; Garcia-Sastre A; Godzik A; Gonzalez-Reiche AS; Gordon A; Haagmans BL; Halfmann PJ; Ho DD; Holbrook MR; Huang Y; James SL; Jaroszewski L; Jeevan T; Johnson RM; Jones TC; Joshi A; Kawaoka Y; Kercher L; Koopmans MPG; Korber B; Koren E; Koup RA; LeGresley EB; Lemieux JE; Liebeskind MJ; Liu Z; Livingston B; Logue JP; Luo Y; McDermott AB; McElrath MJ; Meliopoulos VA; Menachery VD; Montefiori DC; Muhlemann B; Munster VJ; Munt JE; Nair MS; Netzl A; Niewiadomska AM; O’Dell S; Pekosz A; Perlman S; Pontelli MC; Rockx B; Rolland M; Rothlauf PW; Sacharen S; Scheuermann RH; Schmidt SD; Schotsaert M; Schultz-Cherry S; Seder RA; Sedova M; Sette A; Shabman RS; Shen X; Shi PY; Shukla M; Simon V; Stumpf S; Sullivan NJ; Thackray LB; Theiler J; Thomas PG; Trifkovic S; Tureli S; Turner SA; Vakaki MA; van Bakel H; VanBlargan LA; Vincent LR; Wallace ZS; Wang L; Wang M; Wang P; Wang W; Weaver SC; Webby RJ; Weiss CD; Wentworth DE; Weston SM; Whelan SPJ; Whitener BM; Wilks SH; Xie X; Ying B; Yoon H; Zhou B; Hertz T; Smith DJ; Diamond MS; Post DJ; Suthar MS Defining the risk of SARS-CoV-2 variants on immune protection. Nature 2022, 605 (7911), 640–652. DOI: 10.1038/s41586-022-04690-5 From NLM Medline. PubMed DOI PMC

Zhong L; Zhao Z; Peng X; Zou J; Yang S Recent advances in small-molecular therapeutics for COVID-19. Precis Clin Med 2022, 5 (4), pbac024. DOI: 10.1093/pcmedi/pbac024 From NLM PubMed-not-MEDLINE. PubMed DOI PMC

Ferron F; Decroly E; Selisko B; Canard B The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res 2012, 96 (1), 21–31. DOI: 10.1016/j.antiviral.2012.07.007 From NLM Medline. PubMed DOI PMC

Schubert HL; Blumenthal RM; Cheng X Many paths to methyltransfer: a chronicle of convergence. Trends in Biochemical Sciences 2003, 28 (6), 329–335. DOI: 10.1016/s0968-0004(03)00090-2. PubMed DOI PMC

Shu T; Huang M; Wu D; Ren Y; Zhang X; Han Y; Mu J; Wang R; Qiu Y; Zhang DY; Zhou X SARS-Coronavirus-2 Nsp13 Possesses NTPase and RNA Helicase Activities That Can Be Inhibited by Bismuth Salts. Virol Sin 2020, 35 (3), 321–329. DOI: 10.1007/s12250-020-00242-1 From NLM Medline. PubMed DOI PMC

Ivanov KA; Thiel V; Dobbe JC; van der Meer Y; Snijder EJ; Ziebuhr J Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 2004, 78 (11), 5619–5632. DOI: 10.1128/JVI.78.11.5619-5632.2004 From NLM Medline. PubMed DOI PMC

Yan L; Ge J; Zheng L; Zhang Y; Gao Y; Wang T; Huang Y; Yang Y; Gao S; Li M; Liu Z; Wang H; Li Y; Chen Y; Guddat LW; Wang Q; Rao Z; Lou Z Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell 2021, 184 (1), 184–193 e110. DOI: 10.1016/j.cell.2020.11.016 From NLM Medline. PubMed DOI PMC

Wang B; Svetlov D; Artsimovitch I NMPylation and de-NMPylation of SARS-CoV-2 nsp9 by the NiRAN domain. Nucleic Acids Res 2021, 49 (15), 8822–8835. DOI: 10.1093/nar/gkab677 From NLM Medline. PubMed DOI PMC

Park GJ; Osinski A; Hernandez G; Eitson JL; Majumdar A; Tonelli M; Henzler-Wildman K; Pawlowski K; Chen Z; Li Y; Schoggins JW; Tagliabracci VS The mechanism of RNA capping by SARS-CoV-2. Nature 2022, 609 (7928), 793–800. DOI: 10.1038/s41586-022-05185-z From NLM Medline. PubMed DOI PMC

Bouvet M; Debarnot C; Imbert I; Selisko B; Snijder EJ; Canard B; Decroly E In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog 2010, 6 (4), e1000863. DOI: 10.1371/journal.ppat.1000863 From NLM Medline. PubMed DOI PMC

Chen Y; Cai H; Pan J; Xiang N; Tien P; Ahola T; Guo D Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A 2009, 106 (9), 3484–3489. DOI: 10.1073/pnas.0808790106 From NLM Medline. PubMed DOI PMC

Yan L; Yang Y; Li M; Zhang Y; Zheng L; Ge J; Huang YC; Liu Z; Wang T; Gao S; Zhang R; Huang YY; Guddat LW; Gao Y; Rao Z; Lou Z Coupling of N7-methyltransferase and 3’−5’ exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell 2021, 184 (13), 3474–3485 e3411. DOI: 10.1016/j.cell.2021.05.033 From NLM Medline. PubMed DOI PMC

Minasov G; Rosas-Lemus M; Shuvalova L; Inniss NL; Brunzelle J; Daczkowski CM; Hoover P; Mesecar AD; Satchell KJF Mn2+ coordinates Cap-0-RNA to align substrates for efficient 2′-O-methyl transfer by SARS-CoV-2 nsp16. Science Signaling 2021, 14 (689), eabh2071. DOI: 10.1126/scisignal.abh2071. PubMed DOI PMC

Rosas-Lemus M; Minasov G; Shuvalova L; Inniss NL; Kiryukhina O; Brunzelle J; Satchell KJF High-resolution structures of the SARS-CoV-2 2’-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci Signal 2020, 13 (651). DOI: 10.1126/scisignal.abe1202 From NLM Medline. PubMed DOI PMC

Benoni R; Krafcikova P; Baranowski MR; Kowalska J; Boura E; Cahova H Substrate Specificity of SARS-CoV-2 Nsp10-Nsp16 Methyltransferase. Viruses 2021, 13 (9). DOI: 10.3390/v13091722 From NLM Medline. PubMed DOI PMC

Decroly E; Debarnot C; Ferron F; Bouvet M; Coutard B; Imbert I; Gluais L; Papageorgiou N; Sharff A; Bricogne G; Ortiz-Lombardia M; Lescar J; Canard B Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 2011, 7 (5), e1002059. DOI: 10.1371/journal.ppat.1002059 From NLM Medline. PubMed DOI PMC

Menachery VD; Debbink K; Baric RS Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Res 2014, 194, 191–199. DOI: 10.1016/j.virusres.2014.09.009 From NLM Medline. PubMed DOI PMC

Menachery VD; Yount BL Jr.; Josset L; Gralinski LE; Scobey T; Agnihothram S; Katze MG; Baric RS Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-o-methyltransferase activity. J Virol 2014, 88 (8), 4251–4264. DOI: 10.1128/JVI.03571-13 From NLM Medline. PubMed DOI PMC

Shi P; Su Y; Li R; Liang Z; Dong S; Huang J PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res 2019, 265, 57–66. DOI: 10.1016/j.virusres.2019.03.005 From NLM Medline. PubMed DOI PMC

Bergant V; Yamada S; Grass V; Tsukamoto Y; Lavacca T; Krey K; Muhlhofer MT; Wittmann S; Ensser A; Herrmann A; Vom Hemdt A; Tomita Y; Matsuyama S; Hirokawa T; Huang Y; Piras A; Jakwerth CA; Oelsner M; Thieme S; Graf A; Krebs S; Blum H; Kummerer BM; Stukalov A; Schmidt-Weber CB; Igarashi M; Gramberg T; Pichlmair A; Kato H Attenuation of SARS-CoV-2 replication and associated inflammation by concomitant targeting of viral and host cap 2’-O-ribose methyltransferases. EMBO J 2022, 41 (17), e111608. DOI: 10.15252/embj.2022111608 From NLM Medline. PubMed DOI PMC

Wang Y; Sun Y; Wu A; Xu S; Pan R; Zeng C; Jin X; Ge X; Shi Z; Ahola T; Chen Y; Guo D Coronavirus nsp10/sp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis. J Virol 2015, 89 (16), 8416–8427, Journal Article. DOI: 10.1128/JVI.00948-15. PubMed DOI PMC

Case JB; Ashbrook AW; Dermody TS; Denison MR Mutagenesis of S-Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase Demonstrates Differing Requirements for Genome Translation and Resistance to Innate Immunity. J Virol 2016, 90 (16), 7248–7256. DOI: 10.1128/JVI.00542-16 From NLM Medline. PubMed DOI PMC

Ramdhan P; Li C Targeting Viral Methyltransferases: An Approach to Antiviral Treatment for ssRNA Viruses. Viruses 2022, 14 (2). DOI: 10.3390/v14020379 From NLM Medline. PubMed DOI PMC

Chang LJ; Chen TH NSP16 2’-O-MTase in Coronavirus Pathogenesis: Possible Prevention and Treatments Strategies. Viruses 2021, 13 (4). DOI: 10.3390/v13040538 From NLM Medline. PubMed DOI PMC

Li F; Ghiabi P; Hajian T; Klima M; Li ASM; Khalili Yazdi A; Chau I; Loppnau P; Kutera M; Seitova A; Bolotokova A; Hutchinson A; Perveen S; Boura E; Vedadi M SS148 and WZ16 inhibit the activities of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses. Biochim Biophys Acta Gen Subj 2023, 1867 (4), 130319. DOI: 10.1016/j.bbagen.2023.130319 From NLM Publisher. PubMed DOI PMC

Bobileva O; Bobrovs R; Kanepe I; Patetko L; Kalnins G; Sisovs M; Bula AL; Gri Nberga S; Boroduskis MR; Ramata-Stunda A; Rostoks N; Jirgensons A; Ta Rs K; Jaudzems K Potent SARS-CoV-2 mRNA Cap Methyltransferase Inhibitors by Bioisosteric Replacement of Methionine in SAM Cosubstrate. ACS Med Chem Lett 2021, 12 (7), 1102–1107. DOI: 10.1021/acsmedchemlett.1c00140 From NLM PubMed-not-MEDLINE. PubMed DOI PMC

Morales P; Curtis NL; Zarate SG; Bastida A; Bolanos-Garcia VM Interfering with mRNA Methylation by the 2 ‘ O-Methyltransferase (NSP16) from SARS-CoV-2 to Tackle the COVID-19 Disease. Catalysts 2020, 10 (9). DOI: ARTN 1023 10.3390/catal10091023. DOI

Bobrovs R; Kanepe I; Narvaiss N; Patetko L; Kalnins G; Sisovs M; Bula AL; Grinberga S; Boroduskis M; Ramata-Stunda A; Rostoks N; Jirgensons A; Tars K; Jaudzems K Discovery of SARS-CoV-2 Nsp14 and Nsp16 Methyltransferase Inhibitors by High-Throughput Virtual Screening. Pharmaceuticals (Basel) 2021, 14 (12). DOI: 10.3390/ph14121243 From NLM PubMed-not-MEDLINE. PubMed DOI PMC

Klima M; Khalili Yazdi A; Li F; Chau I; Hajian T; Bolotokova A; Kaniskan HU; Han Y; Wang K; Li D; Luo M; Jin J; Boura E; Vedadi M Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16. Protein Sci 2022, 31 (9), e4395. DOI: 10.1002/pro.4395 From NLM Medline. PubMed DOI PMC

Vithani N; Ward MD; Zimmerman MI; Novak B; Borowsky JH; Singh S; Bowman GR SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential. Biophys J 2021, 120 (14), 2880–2889. DOI: 10.1016/j.bpj.2021.03.024 From NLM PubMed-not-MEDLINE. PubMed DOI PMC

Yazdi AK; Li F; Devkota K; Perveen S; Ghiabi P; Hajian T; Bolotokova A; Vedadi M A High-Throughput Radioactivity-Based Assay for Screening SARS-CoV-2 nsp10-nsp16 Complex. SLAS Discovery 2021, 26 (6), 757+765. DOI: 10.1177/24725552211008863. PubMed DOI PMC

Rosas-Lemus M; Minasov G; Shuvalova L; Inniss NL; Kiryukhina O; Wiersum G; Kim Y; Jedrzejczak R; Maltseva NI; Endres M; Jaroszewski L; Godzik A; Joachimiak A; Satchell KJF The crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine. bioRxiv 2020. DOI: 10.1101/2020.04.17.047498 From NLM PubMed-not-MEDLINE. DOI

Rosas-Lemus M; Minasov G; Shuvalova L; Inniss NL; Kiryukhina O; Brunzelle J; Satchell KJF High-resolution structures of the SARS-CoV-2 2’-O-methyltransferase reveal strategies for structure-based inhibitor design Supp. Sci Signal 2020, 13 (651). DOI: 10.1126/scisignal.abe1202 From NLM Medline. PubMed DOI PMC

Krafcikova P; Silhan J; Nencka R; Boura E Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun 2020, 11 (1), 3717. DOI: 10.1038/s41467-020-17495-9 From NLM Medline. PubMed DOI PMC

Wilamowski M; Sherrell DA; Minasov G; Kim Y; Shuvalova L; Lavens A; Chard R; Maltseva N; Jedrzejczak R; Rosas-Lemus M; Saint N; Foster IT; Michalska K; Satchell KJF; Joachimiak A 2’-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proc Natl Acad Sci U S A 2021, 118 (21). DOI: 10.1073/pnas.2100170118 From NLM Medline. PubMed DOI PMC

Fanfrlik J; Brahmkshatriya PS; Rezac J; Jilkova A; Horn M; Mares M; Hobza P; Lepsik M Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. J Phys Chem B 2013, 117 (48), 14973–14982. DOI: 10.1021/jp409604n From NLM Medline. PubMed DOI

Krippendorff BF; Neuhaus R; Lienau P; Reichel A; Huisinga W Mechanism-based inhibition: deriving K(I) and k(inact) directly from time-dependent IC(50) values. J Biomol Screen 2009, 14 (8), 913–923. DOI: 10.1177/1087057109336751 From NLM Medline. PubMed DOI

Copeland RA Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists; John Wiley & Sons, Inc., Hoboken, NJ, 2005. PubMed

Sheahan TP; Sims AC; Zhou S; Graham RL; Pruijssers AJ; Agostini ML; Leist SR; Schafer A; Dinnon KH 3rd; Stevens LJ; Chappell JD; Lu X; Hughes TM; George AS; Hill CS; Montgomery SA; Brown AJ; Bluemling GR; Natchus MG; Saindane M; Kolykhalov AA; Painter G; Harcourt J; Tamin A; Thornburg NJ; Swanstrom R; Denison MR; Baric RS An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020, 12 (541). DOI: 10.1126/scitranslmed.abb5883 From NLM Medline. PubMed DOI PMC

Adams MJ; Lefkowitz EJ; King AM; Harrach B; Harrison RL; Knowles NJ; Kropinski AM; Krupovic M; Kuhn JH; Mushegian AR; Nibert ML; Sabanadzovic S; Sanfacon H; Siddell SG; Simmonds P; Varsani A; Zerbini FM; Orton RJ; Smith DB; Gorbalenya AE; Davison AJ 50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Arch Virol 2017, 162 (5), 1441–1446. DOI: 10.1007/s00705-016-3215-y From NLM Medline. PubMed DOI

Grabherr S; Ludewig B; Pikor NB Insights into coronavirus immunity taught by the murine coronavirus. Eur J Immunol 2021, 51 (5), 1062–1070. DOI: 10.1002/eji.202048984 From NLM Medline. PubMed DOI PMC

Jumper J; Evans R; Pritzel A; Green T; Figurnov M; Ronneberger O; Tunyasuvunakool K; Bates R; Zidek A; Potapenko A; Bridgland A; Meyer C; Kohl SAA; Ballard AJ; Cowie A; Romera-Paredes B; Nikolov S; Jain R; Adler J; Back T; Petersen S; Reiman D; Clancy E; Zielinski M; Steinegger M; Pacholska M; Berghammer T; Bodenstein S; Silver D; Vinyals O; Senior AW; Kavukcuoglu K; Kohli P; Hassabis D Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. DOI: 10.1038/s41586-021-03819-2 From NLM Medline. PubMed DOI PMC

Zust R; Cervantes-Barragan L; Habjan M; Maier R; Neuman BW; Ziebuhr J; Szretter KJ; Baker SC; Barchet W; Diamond MS; Siddell SG; Ludewig B; Thiel V Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 2011, 12 (2), 137–143. DOI: 10.1038/ni.1979 From NLM Medline. PubMed DOI PMC

Palacio N; Dangi T; Chung YR; Wang Y; Loredo-Varela JL; Zhang Z; Penaloza-MacMaster P Early type I IFN blockade improves the efficacy of viral vaccines. J Exp Med 2020, 217 (12). DOI: 10.1084/jem.20191220 From NLM Medline. PubMed DOI PMC

Bhurta D; Bharate SB Styryl Group, a Friend or Foe in Medicinal Chemistry. ChemMedChem 2022, 17 (7), e202100706. DOI: 10.1002/cmdc.202100706 From NLM Medline. PubMed DOI

Talele TT The “Cyclopropyl Fragment” is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J Med Chem 2016, 59 (19), 8712–8756. DOI: 10.1021/acs.jmedchem.6b00472 From NLM Medline. PubMed DOI

Khalili Yazdi A; Li F; Devkota K; Perveen S; Ghiabi P; Hajian T; Bolotokova A; Vedadi M A High-Throughput Radioactivity-Based Assay for Screening SARS-CoV-2 nsp10-nsp16 Complex. SLAS Discov 2021, 26 (6), 757–765. DOI: 10.1177/24725552211008863. PubMed DOI PMC

Minor W; Cymborowski M; Otwinowski Z; Chruszcz M HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 2006, 62 (Pt 8), 859–866. DOI: 10.1107/S0907444906019949 From NLM Medline. PubMed DOI

McCoy AJ; Grosse-Kunstleve RW; Adams PD; Winn MD; Storoni LC; Read RJ Phaser crystallographic software. J Appl Crystallogr 2007, 40 (Pt 4), 658–674. DOI: 10.1107/S0021889807021206 From NLM PubMed-not-MEDLINE. PubMed DOI PMC

Winn MD; Ballard CC; Cowtan KD; Dodson EJ; Emsley P; Evans PR; Keegan RM; Krissinel EB; Leslie AG; McCoy A; McNicholas SJ; Murshudov GN; Pannu NS; Potterton EA; Powell HR; Read RJ; Vagin A; Wilson KS Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011, 67 (Pt 4), 235–242. DOI: 10.1107/S0907444910045749 From NLM Medline. PubMed DOI PMC

Murshudov GN; Skubak P; Lebedev AA; Pannu NS; Steiner RA; Nicholls RA; Winn MD; Long F; Vagin AA REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 2011, 67 (Pt 4), 355–367. DOI: 10.1107/S0907444911001314 From NLM Medline. PubMed DOI PMC

Emsley P; Cowtan K Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60 (Pt 12 Pt 1), 2126–2132. DOI: 10.1107/S0907444904019158 From NLM Medline. PubMed DOI

Morris RJ; Zwart PH; Cohen S; Fernandez FJ; Kakaris M; Kirillova O; Vonrhein C; Perrakis A; Lamzin VS Breaking good resolutions with ARP/wARP. J Synchrotron Radiat 2004, 11 (Pt 1), 56–59. DOI: 10.1107/s090904950302394x From NLM Medline. PubMed DOI

Painter J; Merritt EA TLSMD web server for the generation of multi-group TLS models. J. Appl. Cryst 2006, 39, 109–111. DOI: 10.1107/S0021889805038987. DOI

Chen VB; Arendall WB 3rd; Headd JJ; Keedy DA; Immormino RM; Kapral GJ; Murray LW; Richardson JS; Richardson DC MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010, 66 (Pt 1), 12–21. DOI: 10.1107/S0907444909042073 From NLM Medline. PubMed DOI PMC

Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015.

Becke AD Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 1988, 38 (6), 3098–3100. DOI: 10.1103/physreva.38.3098 From NLM PubMed-not-MEDLINE. PubMed DOI

Perdew JP Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens Matter 1986, 33 (12), 8822–8824. DOI: 10.1103/physrevb.33.8822 From NLM PubMed-not-MEDLINE. PubMed DOI

Godbout N; Salahub DR; Andzelm J; Wimmer E Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Canadian Journal of Chemistry 1992, 70 (2), 560–571. DOI: 10.1139/v92-079. DOI

Grimme S; Antony J; Ehrlich S; Krieg H A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 2010, 132 (15), 154104. DOI: 10.1063/1.3382344. PubMed DOI

Maier JA; Martinez C; Kasavajhala K; Wickstrom L; Hauser KE; Simmerling C ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput 2015, 11 (8), 3696–3713. DOI: 10.1021/acs.jctc.5b00255 From NLM Medline. PubMed DOI PMC

Klamt A The COSMO and COSMO-RS solvation models. WIREs Computational Molecular Science 2018, 8 (1), e1338. DOI: 10.1002/wcms.1338. DOI

Kipouros I; Stanczak A; Ginsbach JW; Andrikopoulos PC; Rulisek L; Solomon EI Elucidation of the tyrosinase/O(2)/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis. Proc Natl Acad Sci U S A 2022, 119 (33), e2205619119. DOI: 10.1073/pnas.2205619119 From NLM Medline. PubMed DOI PMC

Bim D; Navratil M; Gutten O; Konvalinka J; Kutil Z; Culka M; Navratil V; Alexandrova AN; Barinka C; Rulisek L Predicting Effects of Site-Directed Mutagenesis on Enzyme Kinetics by QM/MM and QM Calculations: A Case of Glutamate Carboxypeptidase II. J Phys Chem B 2022, 126 (1), 132–143. DOI: 10.1021/acs.jpcb.1c09240 From NLM Medline. PubMed DOI

Bim D; Chalupsky J; Culka M; Solomon EI; Rulisek L; Srnec M Proton-Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Delta(9)-Desaturase. J Am Chem Soc 2020, 142 (23), 10412–10423. DOI: 10.1021/jacs.0c01786 From NLM Medline. PubMed DOI PMC

Laskowski RA; Swindells MB LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011, 51 (10), 2778–2786. DOI: 10.1021/ci200227u From NLM Medline. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...