Discovery of highly potent SARS-CoV-2 nsp14 methyltransferase inhibitors based on adenosine 5'-carboxamides
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39220762
PubMed Central
PMC11352099
DOI
10.1039/d4md00422a
PII: d4md00422a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The emergence of SARS-CoV-2, the causative agent of COVID-19, has highlighted the need for advanced antiviral strategies. Targeting the coronaviral methyltransferase nsp14, which is essential for RNA capping, offers a promising approach for the development of small-molecule inhibitors. We designed and synthesized a series of adenosine 5'-carboxamide derivatives as potential nsp14 inhibitors and identified coumarin analogs to be particularly effective. Structural modifications revealed the importance of the 5'-carboxyl moiety for the inhibitory activity, showing superior efficacy compared to other modifications. Notably, compound 18l (HK370) demonstrated high selectivity and favorable in vitro pharmacokinetic properties and exhibited moderate antiviral activity in cell-based assays. These findings provide a robust foundation for developing targeted nsp14 inhibitors as a potential treatment for COVID-19 and related diseases.
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Department of Organic Chemistry Faculty of Science Charles University Prague Czech Republic
Faculty of Chemical Technology University of Chemistry and Technology Prague Czech Republic
Zobrazit více v PubMed
Wu F. Zhao S. Yu B. Chen Y.-M. Wang W. Song Z.-G. Hu Y. Tao Z.-W. Tian J.-H. Pei Y.-Y. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC
Lu R. Zhao X. Li J. Niu P. Yang B. Wu H. Wang W. Song H. Huang B. Zhu N. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8. PubMed DOI PMC
Klein S. Cortese M. Winter S. L. Wachsmuth-Melm M. Neufeldt C. J. Cerikan B. Stanifer M. L. Boulant S. Bartenschlager R. Chlanda P. Nat. Commun. 2020;11:5885. doi: 10.1038/s41467-020-19619-7. PubMed DOI PMC
Züst R. Cervantes-Barragan L. Habjan M. Maier R. Neuman B. W. Ziebuhr J. Szretter K. J. Baker S. C. Barchet W. Diamond M. S. Nat. Immunol. 2011;12:137–143. doi: 10.1038/ni.1979. PubMed DOI PMC
Pichlmair A. e Sousa C. R. Immunity. 2007;27:370–383. doi: 10.1016/j.immuni.2007.08.012. PubMed DOI
Nencka R. Silhan J. Klima M. Otava T. Kocek H. Krafcikova P. Boura E. Nucleic Acids Res. 2022;50:635–650. doi: 10.1093/nar/gkab1279. PubMed DOI PMC
Otava T. Sala M. Li F. Fanfrlik J. Devkota K. Perveen S. Chau I. Pakarian P. Hobza P. Vedadi M. ACS Infect. Dis. 2021;7:2214–2220. doi: 10.1021/acsinfecdis.1c00131. PubMed DOI
Štefek M. Chalupská D. Chalupský K. Zgarbová M. Dvořáková A. Krafčíková P. Li A. S. M. Šála M. Dejmek M. Otava T. ACS Omega. 2023;8:27410–27418. doi: 10.1021/acsomega.3c02815. PubMed DOI PMC
Singh I. Li F. Fink E. A. Chau I. Li A. Rodriguez-Hernández A. Glenn I. Zapatero-Belinchón F. J. Rodriguez M. L. Devkota K. J. Med. Chem. 2023;66:7785–7803. doi: 10.1021/acs.jmedchem.2c02120. PubMed DOI PMC
Amador R. Delpal A. Canard B. Vasseur J.-J. Decroly E. Debart F. Clavé G. Smietana M. Org. Biomol. Chem. 2022;20:7582–7586. doi: 10.1039/D2OB01569B. PubMed DOI
Bobileva O. Bobrovs R. Kanepe I. Patetko L. Kalnins G. Sisovs M. Bula A. L. Grinberga S. BoroduŠķis M. R. S. Ramata-Stunda A. ACS Med. Chem. Lett. 2021;12:1102–1107. doi: 10.1021/acsmedchemlett.1c00140. PubMed DOI PMC
Hassan H. Chiavaralli J. Hassan A. Bedda L. Krischuns T. Chen K.-Y. Li A. S. M. Delpal A. Decroly E. Vedadi M. RSC Med. Chem. 2023;14:507–519. doi: 10.1039/D2MD00149G. PubMed DOI PMC
Zmudzinski M. Rut W. Olech K. Granda J. Giurg M. Burda-Grabowska M. Kaleta R. Zgarbova M. Kasprzyk R. Zhang L. Sci. Rep. 2023;13:9161. doi: 10.1038/s41598-023-35907-w. PubMed DOI PMC
Nigam A. Hurley M. F. D. Li F. Konkoľová E. Klima M. Trylčová J. Pollice R. Çinaroǧlu S. S. Levin-Konigsberg R. Handjaya J. Schapira M. Chau I. Perveen S. Ng H.-L. Kaniskan H. Ü. Han Y. Singh S. Gorgulla C. Kundaje A. Jin J. Voelz V. A. Weber J. Nencka R. Boura E. Vedadi M. Aspuru-Guzik A. Digital Discovery. 2024;3:1327–1341. doi: 10.1039/D4DD00006D. DOI
Devkota K. Schapira M. Perveen S. Khalili Yazdi A. Li F. Chau I. Ghiabi P. Hajian T. Loppnau P. Bolotokova A. SLAS Discovery. 2021;26:1200–1211. doi: 10.1177/24725552211026261. PubMed DOI PMC
Chen J. Zhou Y. Wei X. Xu X. Qin Z. Ong C. P. Ye Z. W. Jin D. Y. Boitrel B. Yuan S. Chan J. F. Li H. Sun H. ACS Infect. Dis. 2024;10:858–869. doi: 10.1021/acsinfecdis.3c00356. PubMed DOI
Inniss N. L. Kozic J. Li F. Rosas-Lemus M. Minasov G. Rybáček J. I. Zhu Y. Pohl R. Shuvalova L. RulíŠek L. R. ACS Infect. Dis. 2023;9:1918–1931. doi: 10.1021/acsinfecdis.3c00203. PubMed DOI PMC
Li F. Ghiabi P. Hajian T. Klima M. Li A. S. M. Yazdi A. K. Chau I. Loppnau P. Kutera M. Seitova A. Biochim. Biophys. Acta, Gen. Subj. 2023;1867:130319. doi: 10.1016/j.bbagen.2023.130319. PubMed DOI PMC
Zgarbová M. Otava T. Silhan J. Nencka R. Weber J. Boura E. Antiviral Res. 2023;218:105714. doi: 10.1016/j.antiviral.2023.105714. PubMed DOI
Silhan J. Klima M. Otava T. Skvara P. Chalupska D. Chalupsky K. Kozic J. Nencka R. Boura E. Nat. Commun. 2023;14:2259. doi: 10.1038/s41467-023-38019-1. PubMed DOI PMC
Krafcikova P. Silhan J. Nencka R. Boura E. Nat. Commun. 2020;11:3717. doi: 10.1038/s41467-020-17495-9. PubMed DOI PMC
Bobileva O. Bobrovs R. Sirma E. E. Kanepe I. Bula A. L. Patetko L. Ramata-Stunda A. Grinberga S. Jirgensons A. Jaudzems K. Molecules. 2023;28:768. doi: 10.3390/molecules28020768. PubMed DOI PMC
Bobrovs R. Kanepe I. Narvaiss N. Patetko L. Kalnins G. Sisovs M. Bula A. L. Grinberga S. Boroduskis M. Ramata-Stunda A. Pharmaceuticals. 2021;14:1243. doi: 10.3390/ph14121243. PubMed DOI PMC
Jung E. Soto-Acosta R. Xie J. Wilson D. J. Dreis C. D. Majima R. Edwards T. C. Geraghty R. J. Chen L. ACS Med. Chem. Lett. 2022;13:1477–1484. doi: 10.1021/acsmedchemlett.2c00265. PubMed DOI PMC
Ahmed-Belkacem R. Hausdorff M. Delpal A. Sutto-Ortiz P. Colmant A. M. Touret F. Ogando N. S. Snijder E. J. Canard B. Coutard B. J. Med. Chem. 2022;65:6231–6249. doi: 10.1021/acs.jmedchem.2c00120. PubMed DOI
Ahmed-Belkacem R. Sutto-Ortiz P. Guiraud M. Canard B. Vasseur J.-J. Decroly E. Debart F. Eur. J. Med. Chem. 2020;201:112557. doi: 10.1016/j.ejmech.2020.112557. PubMed DOI PMC
Ahmed-Belkacem R. Troussier J. Delpal A. Canard B. Vasseur J.-J. Decroly E. Debart F. RSC Med. Chem. 2024;15:839–847. doi: 10.1039/D3MD00737E. PubMed DOI PMC
Hausdorff M. Delpal A. Barelier S. Nicollet L. Canard B. Touret F. Colmant A. Coutard B. Vasseur J.-J. Decroly E. Eur. J. Med. Chem. 2023;256:115474. doi: 10.1016/j.ejmech.2023.115474. PubMed DOI PMC
Shah R. Strom A. Zhou A. Maize K. M. Finzel B. C. Wagner C. R. ACS Med. Chem. Lett. 2016;7:780–784. doi: 10.1021/acsmedchemlett.6b00169. PubMed DOI PMC
Epp J. B. Widlanski T. S. J. Org. Chem. 1999;64:293–295. doi: 10.1021/jo981316g. PubMed DOI
De Ornellas S. Slattery J. M. Edkins R. M. Beeby A. Baumann C. G. Fairlamb I. J. Org. Biomol. Chem. 2015;13:68–72. doi: 10.1039/C4OB02081B. PubMed DOI
Luan Y. Blazer L. L. Hu H. Hajian T. Zhang J. Wu H. Houliston S. Arrowsmith C. H. Vedadi M. Zheng Y. G. Org. Biomol. Chem. 2016;14:631–638. doi: 10.1039/C5OB01794G. PubMed DOI PMC
Yu B. Liu A.-H. He L.-N. Li B. Diao Z.-F. Li Y.-N. Green Chem. 2012;14:957–962. doi: 10.1039/C2GC00027J. DOI
Ensinger M. J. Moss B. J. Biol. Chem. 1976;251:5283–5291. doi: 10.1016/S0021-9258(17)33159-9. PubMed DOI
Czarna A. Plewka J. Kresik L. Matsuda A. Karim A. Robinson C. O'Byrne S. Cunningham F. Georgiou I. Wilk P. Structure. 2022;30:1050–1054. doi: 10.1016/j.str.2022.04.014. PubMed DOI PMC
Friesner R. A. Banks J. L. Murphy R. B. Halgren T. A. Klicic J. J. Mainz D. T. Repasky M. P. Knoll E. H. Shelley M. Perry J. K. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI
Ogando N. S. El Kazzi P. Zevenhoven-Dobbe J. C. Bontes B. W. Decombe A. Posthuma C. C. Thiel V. Canard B. Ferron F. Decroly E. Proc. Natl. Acad. Sci. U. S. A. 2021;118:e2108709118. doi: 10.1073/pnas.2108709118. PubMed DOI PMC
Fratev F. Steinbrecher T. Jónsdóttir S. Ó. ACS Omega. 2018;3:4357–4371. doi: 10.1021/acsomega.8b00123. PubMed DOI PMC
Ashram M. Habashneh A. Y. Bardaweel S. Taha M. O. Med. Chem. Res. 2023;32:271–287. doi: 10.1007/s00044-022-03001-x. DOI
Ma Y. Wu L. Shaw N. Gao Y. Wang J. Sun Y. Lou Z. Yan L. Zhang R. Rao Z. Proc. Natl. Acad. Sci. U. S. A. 2015;112:9436–9441. doi: 10.1073/pnas.1508686112. PubMed DOI PMC
Artursson P. Karlsson J. Biochem. Biophys. Res. Commun. 1991;175:880–885. doi: 10.1016/0006-291X(91)91647-U. PubMed DOI
Hilgers A. R. Conradi R. A. Burton P. S. Pharm. Res. 1990;7:902–910. doi: 10.1023/A:1015937605100. PubMed DOI
Yazdanian M. Briggs K. Jankovsky C. Hawi A. Pharm. Res. 2004;21:293–299. doi: 10.1023/B:PHAM.0000016242.48642.71. PubMed DOI
Roehm N. W. Rodgers G. H. Hatfield S. M. Glasebrook A. L. J. Immunol. Methods. 1991;142:257–265. doi: 10.1016/0022-1759(91)90114-U. PubMed DOI
Emeny J. M. Morgan M. J. J. Gen. Virol. 1979;43:247–252. doi: 10.1099/0022-1317-43-1-247. PubMed DOI
Schrödinger L. and DeLano W., URL https://www.pymol.org/pymol, 2022
Structural basis for broad-spectrum binding of AT-9010 to flaviviral methyltransferases