SS148 and WZ16 inhibit the activities of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
U19 AI171110
NIAID NIH HHS - United States
PubMed
36764586
PubMed Central
PMC9908617
DOI
10.1016/j.bbagen.2023.130319
PII: S0304-4165(23)00017-X
Knihovny.cz E-zdroje
- Klíčová slova
- Coronavirus, Enzyme kinetics, Enzyme purification, RNA methyltransferase, RNA virus, Viral protein, nsp10-nsp16 complex,
- MeSH
- COVID-19 * MeSH
- lidé MeSH
- methyltransferasy chemie MeSH
- pandemie MeSH
- RNA MeSH
- SARS-CoV-2 genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methyltransferasy MeSH
- NSP10 protein, SARS-CoV-2 MeSH Prohlížeč
- NSP16 protein, SARS-CoV-2 MeSH Prohlížeč
- RNA MeSH
- SS148 MeSH Prohlížeč
- WZ16 MeSH Prohlížeč
Seven coronaviruses have infected humans (HCoVs) to-date. SARS-CoV-2 caused the current COVID-19 pandemic with the well-known high mortality and severe socioeconomic consequences. MERS-CoV and SARS-CoV caused epidemic of MERS and SARS, respectively, with severe respiratory symptoms and significant fatality. However, HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 cause respiratory illnesses with less severe symptoms in most cases. All coronaviruses use RNA capping to evade the immune systems of humans. Two viral methyltransferases, nsp14 and nsp16, play key roles in RNA capping and are considered valuable targets for development of anti-coronavirus therapeutics. But little is known about the kinetics of nsp10-nsp16 methyltransferase activities of most HCoVs, and reliable assays for screening are not available. Here, we report the expression, purification, and kinetic characterization of nsp10-nsp16 complexes from six HCoVs in parallel with previously characterized SARS-CoV-2. Probing the active sites of all seven by SS148 and WZ16, the two recently reported dual nsp14 / nsp10-nsp16 inhibitors, revealed pan-inhibition. Overall, our study show feasibility of developing broad-spectrum dual nsp14 / nsp10-nsp16-inhibitor therapeutics.
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague 6 Czech Republic
Structural Genomics Consortium University of Toronto Toronto Ontario M5G 1L7 Canada
Zobrazit více v PubMed
Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17(3):181–192. PubMed PMC
Donaldson E.F., Haskew A.N., Gates J.E., Huynh J., Moore C.J., Frieman M.B. Metagenomic analysis of the viromes of three north American bat species: viral diversity among different bat species that share a common habitat. J. Virol. 2010;84(24):13004–13018. PubMed PMC
Huynh J., Li S., Yount B., Smith A., Sturges L., Olsen J.C., et al. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol. 2012;86(23):12816–12825. PubMed PMC
Pfefferle S., Oppong S., Drexler J.F., Gloza-Rausch F., Ipsen A., Seebens A., et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg. Infect. Dis. 2009;15(9):1377–1384. PubMed PMC
Kesheh M.M., Hosseini P., Soltani S., Zandi M. An overview on the seven pathogenic human coronaviruses. Rev. Med. Virol. 2022;32(2) PubMed
Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348(20):1967–1976. PubMed
Fouchier R.A., Kuiken T., Schutten M., van Amerongen G., van Doornum G.J., van den Hoogen B.G., et al. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature. 2003;423(6937):240. PubMed PMC
Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348(20):1953–1966. PubMed
Zhong N.S., Zheng B.J., Li Y.M., Poon Xie Z.H., Chan K.H., et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003;362(9393):1353–1358. PubMed PMC
Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012;367(19):1814–1820. PubMed
Cheng V.C., Lau S.K., Woo P.C., Yuen K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 2007;20(4):660–694. PubMed PMC
Corman V.M., Muth D., Niemeyer D., Drosten C. Hosts and sources of endemic human coronaviruses. Adv. Virus Res. 2018;100:163–188. PubMed PMC
Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020;26(4):450–452. PubMed PMC
Furuichi Y., Shatkin A.J. Viral and cellular mRNA capping: past and prospects. Adv. Virus Res. 2000;55:135–184. PubMed PMC
Menachery V.D., Debbink K., Baric R.S. Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Res. 2014;194:191–199. PubMed PMC
Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L., et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 2003;331(5):991–1004. PubMed PMC
Chen Y., Cai H., Pan J., Xiang N., Tien P., Ahola T., et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl. Acad. Sci. U. S. A. 2009;106(9):3484–3489. PubMed PMC
Chen Y., Su C., Ke M., Jin X., Xu L., Zhang Z., et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2’-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog. 2011;7(10) PubMed PMC
Decroly E., Debarnot C., Ferron F., Bouvet M., Coutard B., Imbert I., et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog. 2011;7(5) PubMed PMC
Khalili Yazdi A., Li F., Devkota K., Perveen S., Ghiabi P., Hajian T., et al. A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complex. SLAS Discov. 2021;26(6):757–765. PubMed PMC
Devkota K., Schapira M., Perveen S., Khalili Yazdi A., Li F., Chau I., et al. Probing the SAM binding site of SARS-CoV-2 Nsp14 in vitro using SAM competitive inhibitors guides developing selective Bisubstrate inhibitors. SLAS Discov. 2021;26(9):1200–1211. PubMed PMC
Otava T., Sala M., Li F., Fanfrlik J., Devkota K., Perveen S., et al. The structure-based design of SARS-CoV-2 nsp14 methyltransferase ligands yields Nanomolar inhibitors. ACS Infect. Dis. 2021;7(8):2214–2220. PubMed
Martin Klima, Aliakbar Khalili Yazdi, Li Fengling, Chau Irene, Taraneh Hajian, Albina Bolotokova H., Ümit Kaniskan, Han3 Yulin, Wang Ke, Li Deyao, Luo Minkui, Jin Jian, Evzen Boura, Masoud Vedadi. Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16. Protein Sci. 2022;31(9):e4395. PubMed PMC
Minasov G., Rosas-Lemus M., Shuvalova L., Inniss N.L., Brunzelle J.S., Daczkowski C.M., et al. Mn(2+) coordinates Cap-0-RNA to align substrates for efficient 2’-O-methyl transfer by SARS-CoV-2 nsp16. Sci. Signal. 2021;14(689) PubMed PMC
Romano M., Ruggiero A., Squeglia F., Maga G., Berisio R. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells. 2020;9(5) PubMed PMC
Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., et al. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 2010;6(4) PubMed PMC
Devarkar S.C., Wang C., Miller M.T., Ramanathan A., Jiang F., Khan A.G., et al. Structural basis for m7G recognition and 2’-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. U. S. A. 2016;113(3):596–601. PubMed PMC
Dostalik P., Krafcikova P., Silhan J., Kozic J., Chalupska D., Chalupsky K., et al. Structural analysis of the OC43 coronavirus 2’-O-RNA methyltransferase. J. Virol. 2021;95(15) PubMed PMC
Copeland R.A. John Wiley & Sons, Inc.; 2005. Evaluation of Enzyme Inhibitors in Drug Discovery. PubMed
Abdool Karim S.S., de Oliveira T. New SARS-CoV-2 variants - clinical, public health, and vaccine implications. N. Engl. J. Med. 2021;384(19):1866–1868. PubMed PMC
Lamb Y.N. Nirmatrelvir plus ritonavir: first approval. Drugs. 2022;82(5):585–591. doi: 10.1007/s40265-022-01692-5. PubMed DOI PMC
Malden D.E., Hong V., Lewin B.J., Ackerson B.K., Lipsitch M., Lewnard J.A., et al. Hospitalization and emergency department encounters for COVID-19 after Paxlovid treatment - California, December 2021-may 2022. MMWR Morb. Mortal. Wkly Rep. 2022;71(25):830–833. PubMed
Daffis S., Szretter K.J., Schriewer J., Li J., Youn S., Errett J., et al. 2’-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 2010;468(7322):452–456. PubMed PMC
Almazan F., Dediego M.L., Galan C., Escors D., Alvarez E., Ortego J., et al. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J. Virol. 2006;80(21):10900–10906. PubMed PMC
Menachery V.D., Yount B.L., Jr., Josset L., Gralinski L.E., Scobey T., Agnihothram S., et al. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-o-methyltransferase activity. J. Virol. 2014;88(8):4251–4264. PubMed PMC
Zust R., Cervantes-Barragan L., Habjan M., Maier R., Neuman B.W., Ziebuhr J., et al. Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 2011;12(2):137–143. PubMed PMC
Scheer S., Ackloo S., Medina T.S., Schapira M., Li F., Ward J.A., et al. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat. Commun. 2019;10(1):19. PubMed PMC
Li A.S.M., Li F., Eram M.S., Bolotokova A., Dela Sena C.C., Vedadi M. Chemical probes for protein arginine methyltransferases. Methods. 2020;175:30–43. PubMed
Dhankhar P., Dalal V., Kotra D.G., Kumar P. In-silico approach to identify novel potent inhibitors against GraR of S. aureus. Front. Biosci. (Landmark Ed) 2020;25(7):1337–1360. PubMed
Gupta D.N., Dalal V., Savita B.K., Dhankhar P., Ghosh D.K., Kumar P., et al. In-silico screening and identification of potential inhibitors against 2Cys peroxiredoxin of Candidatus Liberibacter asiaticus. J. Biomol. Struct. Dyn. 2022;40(19):8725–8739. PubMed
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. PubMed PMC
Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714–2723. PubMed
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30(16):2785–2791. PubMed PMC
The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery
Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors
Structure of monkeypox virus poxin: implications for drug design